首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 348 毫秒
1.
Mechanical activation(MA) of malachite was carried out by dry planetary grinding(DPG) and wet Isa grinding(WIG) methods. When the rotational speed was increased to 400 r/min in DPG, the specific surface area of malachite reached the maximum and the particle size reached the minimum of 0.7–100 μm. Agglomeration occurred between mineral particles when the rotational speed was increased to 580 r/min in DPG.However, no agglomeration was observed among particles with sizes 0.4–3 μm in WIG. X-ray diffraction analysis showed that, at a 580 r/min rotational speed in DPG, the amorphization degree of malachite was 53.12%, whereas that in WIG was 71.40%, indicating that MA led to amorphization and distortion of crystal structures. In addition, in the Fourier transform infrared(FT-IR) spectra of activated malachite, the bands associated with –OH, CO_3~(2-)and metal lattice vibrations of Cu–O and Cu–OH were weakened, and a new H–O–H bending mode and peaks of gaseous CO_2 appeared, indicating that MA decreased the band energy, enhanced dihydroxylation, and increased the chemical reactivity of the malachite.Furthermore, the leaching behavior of copper ore was greatly improved by MA.  相似文献   

2.
A novel electroslag furnace with a rotating mold was fabricated, and the effects of mold rotational speed on the electroslag remelting process were investigated. The results showed that the chemical element distribution in ingots became uniform and that their compact density increased when the mold rotational speed was increased from 0 to 28 r/min. These results were attributed to a reasonable mold speed, which resulted in a uniform temperature in the slag pool and scattered the metal droplets randomly in the metal pool. However, an excessive rotational speed caused deterioration of the solidification structure. When the mold rotational speeds was increased from 0 to 28 r/min, the size of Al2O3 inclusions in the electroslag ingot decreased from 4.4 to 1.9 μm. But the excessive mold rotational speed would decrease the ability of the electroslag remelting to remove the inclusions. The remelting speed gradually increased, which resulted in reduced power consumption with increasing mold rotational speed. This effect was attributed to accelerated heat exchange between the consumable electrode and the molten slag, which resulted from mold rotation. Nevertheless, when the rotational speed reached 28 r/min, the remelting speed did not change because of limitations of metal heat conduction. Mold rotation also improved the surface quality of the ingots by promoting a uniform temperature distribution in the slag pool.  相似文献   

3.
In the present work, the friction stir back extrusion (FSBE) process was used as a novel method for the fabrication of AA6063 aluminum alloy wire. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), tensile and hardness tests were performed. The FSBE via the rotational speed of 475 r/min resulted in fine equiaxed grains, and the mean grain size decreased from 179.0 μm to 15.5 μm due to the occurrence of dynamic recrystallization (DRX). Heat generated by the FSBE changed the size and volume fraction of the Mg2Si precipitated particles. The minimum particle size and maximum volume fraction obtained in the sample were processed by rotational speeds of 475 and 600 r/min, respectively. The 475-r/min sample had the maximum hardness value due to having the lowest grain size (i.e., 15.5 μm) and the presence of many fine Mg2Si precipitates in the aluminum matrix. With increasing rotational speed up to 600 r/min, the hardness decreased, owing to the growth of both grains and precipitates. The FSBE process with a rotational speed of 475 r/min increased the tensile strength (from 150 to 209 MPa) and ductility (from 21.0% to 30.2%) simultaneously.  相似文献   

4.
This article reports the effects of stirring speed and T6 heat treatment on the microstructure and mechanical properties of Al-2024 alloy synthesized by a rheocasting process. There was a decrease in grain size of α-Al particles corresponding to an increase in stirring speed. By increasing the stirring speed, however, the globularity of matrix particles first increased and then declined. It was also found that the hardness, compressive strength, and compressive strain increased with the increase of stirring speed. Microstructural studies revealed the presence of nonsoluble Al15(CuFeMn)3Si2 phase in the vicinity of CuAl2 in the rheocast samples. The required time for the solution treatment stage was also influenced by stirring speed; the solution treatment time decreased with the increase in stirring speed. Furthermore, the rheocast samples required a longer homogenization period compared to conventionally wrought alloys. Improvements in hardness and compressive properties were observed after T6 heat treatment.  相似文献   

5.
Based on the laws of momentum conservation and impulse in accelerating process, the distribution on speed of ununiform slurry flow in a horizontal pipe was studied. According to the momentum change of solid particles and conveying liquid of slurry flow during accelerating, and some effect factors, the relationship between the speed of solid particles and the speed of conveying liquid was obtained.When dealing with the friction between sliding solid particles and pipe, it is pivotal to reasonably distribute component of friction to each solid particle. The friction coefficient between solid particles was obtained by forces analysis and theoretic calculation, and can be used to calculate the friction force on every solid particle. The effect of friction on speed of ever), solid particle was investigated through the impulse law. The result is more accurate than that by using uniform friction on solid particles. It is completely new method to use above theory to get solid particles speed distribution, conveying liquid speed distribution and slurry speed distribution.  相似文献   

6.
Hydrophobic flocculation pretreatment was performed to assess its effect on the recovery of fine cuprite in sulfidation-flotation. The results of the micro-flotation experiment showed that cuprite recovery is related to the particle size, and that an excessive content of fine particles (<18 μm) impacted the recovery of coarse particles. When hydrophobic flocculation pretreatment was used, the recovery of fine cuprite in sulfidation-flotation increased from 60.3% to 86.3% under optimum conditions (pH 9.5; sodium oleate concentration, 2×10-4 mol·L-1; stirring time, 6 min; stirring speed, 1600 r·min-1). The laser particle size analysis and optical microscopy results indicate that hydrophobic flocculation pretreatment effectively reduces the content of fine cuprite, and augments the apparent particle size in the pulp. We performed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO theory calculations to further support the interpretation of the results.  相似文献   

7.
This study investigated the effect of Zn foil layers on the microstructure and corrosion characteristics of friction stir welded aluminum alloy 5754. Samples of various joints were prepared by applying different rotational and welding speeds, and their microstructures were evaluated via a metallographic technique and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy elemental analysis. The anticorrosion behavior of joints in the absence and presence of a Zn interlayer was studied by cyclic potentiodynamic polarization test in 3.5wt% NaCl aqueous solution, and sound welds were obtained in the presence of the Zn interlayer foil. The results revealed that the joint made at a rotational speed of 800 r/min and traveling speed of 15 mm/min achieved a chemical composition identical to that of aluminum alloy 7xxx series, and as such, it showed the best resistance to corrosion.  相似文献   

8.
The effect of H_2S on the corrosion behavior of 316 L stainless steel was investigated using electrochemical methods by changing the gas condition from CO_2 to H_2S and then back to CO_2. The presence of H_2S showed an acceleration effect on the corrosion of 316 L stainless steel in comparison with CO_2. The acceleration effect remained even after the complete removal of H_2S by CO_2, indicating that the passive film was irreversibly damaged. X-ray photoelectron spectroscopy(XPS) analysis indicated that the passive film was composed of Cr_2O_3, Fe_2O_3, and FeS_2 after being immersed in H_2S-containing solutions. The semiconducting property of the passive film was then investigated by using the Mott–Schottky approach. The presence of sulfides resulted in higher acceptor and donor densities and thus was responsible for the deterioration of passive films.  相似文献   

9.
A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16Si30 samples expanded as the SPS temperature was increased from 400 to 750°C. Lattice contraction recurred when the SPS temperature was further increased in the range of 750–1000°C. This phenomenon can be explained by the variation of Ga content in the lattice. The thermoelectric figure of the merit ZT value of clathrates increased with the increase in SPS temperature and reached a maximum when the sample was subjected to SPS at 800°C. A further increase in SPS temperature did not contribute to the improvement of ZT. The variation of the lattice parameter a vs. SPS temperature T was similar to the variation ob-served in the ZT–T curve.  相似文献   

10.
The butt welds of 4-mm thick 5A06 aluminum alloy plates were produced by adjustable-gap bobbin-tool friction stir travel with travel speeds of 200, 300, and 400 mm/min in this study. The microstructure was studied using optical microscopy and electron backscatter diffraction (EBSD). Tensile tests and microhardness measurements were performed to identify the effect of the travel speed on the joint mechanical properties. Sound joints were obtained at 200 mm/min while voids were present at different positions of the joints as the travel speed increased. The EBSD results show that the grain size, high angle grain boundaries, and density of geometrically necessary dislocations in different regions of the joint vary depending on the recovery and recrystallization behavior. Specific attention was given to the relationship between the local microstructure and mechanical properties. Microhardness measurements show that the average hardness of the stir zone (SZ) was greater than that of the base material, which was only affected slightly by the travel speed. The tensile strength of the joint decreased with increasing travel speed and the maximal strength efficiency reached 99%.  相似文献   

11.
实验旨在建立水样中孔雀石绿测定的液相色谱-荧光检测方法.水样中孔雀石绿采用二氯甲烷为溶剂超声波辅助提取,提取液离心分离后经MCX柱净化,并用5%氨水甲醇溶液洗脱,以Develosil C18色谱柱为分析柱,0.05 mol/L的乙酸铵(pH 4.5)-乙腈(20:80,V/V)为流动相,采用荧光检测器分析,外标法定量.结果表明:孔雀石绿在0.05μg~1.0μg/mL范围内线性良好,相关系数为0.9993,检出限为0.5μg/L.空白水样在加标孔雀石绿含量分别为1.0μg、2.5μg、5.0μg时,孔雀石绿的平均加标回收率为72.0%~86.4%,相对标准偏差为5.4%~7.5%.该方法准确度高、精密度良好,适用于水产养殖用水中孔雀石绿的测定.  相似文献   

12.
目的:建立抗荨胶囊(防风蒺藜蝉蜕黄芪当归白鲜皮等)中升麻素苷和5-O-甲基维斯阿米醇苷含量的高效液相色谱的方法。方法:以WondaSil C18-WR(4.6 mm×150mm,5μm PH 1-10)为色谱柱;流动相采用甲醇(A)-0.05%磷酸溶液(B)梯度洗脱:0~6min,40%B,6~17min,45%(B),17~30min,75%(B),升麻素苷和5-O-甲基维斯阿米醇苷检测波长为254nm,流速为1.0mL·min-1,柱温为30℃,进样量为10μl。结果:用梯度洗脱得到了较好的分离效果,升麻素苷18.4~92.0μg/mL之间线性关系良好,r=0.9999550(n=6);5-O-甲基维斯阿米醇苷在22.0~110.0μg/mL之间线性关系良好,r=0.9996565(n=6),平均回收率分别为100.28%和100.56%。结论:该研究同时进行升麻素苷、5-O-甲基维斯阿米醇苷的定量分析,方法专属性强,准确度高,可用于抗荨胶囊中升麻素苷和5-O-甲基维斯阿米醇苷的含量测定。  相似文献   

13.
室温液相合成Cu(OH)2纳米线及其结构   总被引:1,自引:0,他引:1  
提出了一种室温下于水相溶液中大规模合成Cu(OH)2纳米线的新方法.用X-射线粉末衍射(XRD)、透射电镜(TEM)和高分辨透射电镜(HRTEM)研究了所合成的Cu(OH)2纳米线的成分、形貌和结晶性.结果表明Cu(OH)2纳米线的尺寸分布均匀,平均直径约为9nm,长度达数百微米.HRTEM研究表明Cu(OH)2纳米线是含有多晶成分的晶体.根据Cu(OH)2的结构特征和溶液中Cu^2+与配位体之间的相互作用,对Cu(OH)2纳米线的形成机制给出合理的解释.  相似文献   

14.
以8-羟基喹啉在超临界CO2中为螯合剂萃取金属离子,系统考察了压力(1025 MPa)、温度(31325 MPa)、温度(313343K)、时间(10343K)、时间(1090 min)和螯合剂与金属的摩尔比(50∶190 min)和螯合剂与金属的摩尔比(50∶1200∶1)对金属离子萃取效率(E%)的影响.结果表明:当全氟-1-辛烷磺酸四乙基铵盐(PFOAT)作共萃取剂时,在25 MPa,323 K,30 min,15μL水,r(金属离子∶螯合剂∶PFOAT)=1∶100∶25时,对Ni2+的用量在超临界CO2的萃取效率可达88.96%.对萃取常数(Kex)的计算说明在同一种金属离子萃取体系萃取常数随着萃取效率的增加而增加.  相似文献   

15.
CdTe/CdS量子点荧光探针测定痕量汞(Ⅱ)   总被引:1,自引:0,他引:1       下载免费PDF全文
在水溶液中合成巯基乙酸修饰的CdTe/CdS量子点(QDs),再基于Hg2+与CdTe/CdS量子点的荧光猝灭作用,建立用CdTe/CdS量子点作为荧光探针检测微量汞的新方法,并用该方法测定水中汞的含量。研究表明,pH值为6.24的磷酸缓冲溶液中,量子点浓度为3.75×10-4mol/L时,Hg2+离子浓度在2.3~150μg/L范围与CdTe/CdS量子点荧光猝灭强度呈良好的线性关系,相关系数为0.9985,检出限为0.87μg/L,回收率为99.0%~107.5%。该方法检测效果好,可用于实际样品分析。  相似文献   

16.
目的:采用HPLC法测定山西产蒲公英中咖啡酸与绿原酸的含量。方法:采用十八烷基硅烷键合硅胶为填充剂,以磷酸(含0.1%磷酸的水溶液)与乙腈的体积比(85∶15)为流动相,流速1.0mL/min,检测波长322nm。结果:咖啡酸的线性范围为0.8μg/mL~4.0μg/mL(r=0.9966),绿原酸的线性范围0.4μg/mL~2.0μg/mL(r=0.9997);平均回收率:咖啡酸98.73%,RSD为2.49%,绿原酸98.82%,RSD为2.71%。结论:咖啡酸和绿原酸质量分数为0.074%、0.028%,品质优良。  相似文献   

17.
不同加工条件对茶叶超微粉碎效果的影响   总被引:2,自引:0,他引:2  
应用小型气流式粉碎机制备超微茶粉,激光衍射粒度分析仪测定其粒度分布,对工质压力、分选频率、粉碎次数、进料速度四因素分别进行实验。结果表明,随工质压力的增加超微粉粒径减小,工质压力大于0.7MPa时,粒径的减小趋缓;进料速度过大、过小都不利于粉碎;随分选频率的增加超微粉粒径减小,应用到食品方面时25 Hz即可达到要求;随粉碎次数的增加超微粉粒径变化不大,只是分布更集中。最佳实验条件为:工质压力0.7 MPa,分选频率25 Hz,粉碎1次。在此条件下得到超微茶粉的D50(中位径)和D90(积分分布90%时的粒径)分别为12.41μm和40.21μm,且粒度分布集中。  相似文献   

18.
采用低温固相法合成了针状碱式碳酸锌(Zn5(CO3)2(OH)6)纳米结构.使用透射电子显微镜(TEM)和光致发光光谱(PL)表征并研究了所制备样品的微观结构特征和光致发光性能.研究结果表明:Zn5(CO3)2(OH)6针状纳米结构中存在大量的缺陷.光致发光特性显示出在紫外光激发下,Zn5(CO3)2(OH)6针状纳米粒子产生了强蓝色发光现象.在对Zn5(CO3)2(OH)6纳米结构微观结构研究的基础上,我们对纳米结构发光性能作了合理的解释.Zn5 (CO3)2(OH)6针状纳米粒子的强蓝色发光特性主要为纳米粒子中的大量缺陷所致.这种Zn5(CO3)2(OH)6针状纳米结构在光电领域具有潜在的应用价值.  相似文献   

19.
实用地效飞行器技术发展述评   总被引:1,自引:0,他引:1  
李先达 《前沿科学》2011,5(3):22-31
本文简要介绍了地效飞行器的基本原理、用途及实用型地效飞行器的4项关键技术一总体布局技术、动力增升技术、水动布局技术、过渡区操纵技术,并扼要介绍了这些技术在中国科技开发院地效中心所研发的具体型号上的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号