首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
由于传统无迹卡尔曼滤波估算方法具有局限性,为了能准确估算动力电池荷电状态(state of charge,SOC),提出了一种基于无迹卡尔曼粒子滤波的动力电池SOC估算方法.以三元锂电池为研究对象,建立了电池二阶RC等效电路模型,通过对电池进行充放电试验辨识出模型参数,并验证模型准确性.采集了实际工况下的电池数据,分别用无迹卡尔曼滤波算法、粒子滤波算法和无迹卡尔曼粒子滤波算法估算电池SOC,在MATLAB中进行了仿真试验,并对估算的电池SOC进行比较.结果表明:无迹卡尔曼粒子滤波算法可以快速准确地估算出电池SOC,误差小于2.5%,优于另外2种算法.  相似文献   

2.
为了准确获取磷酸铁锂电池的荷电状态(state of charge,SOC),针对直接测量法和扩展卡尔曼滤波方法 (extended kalman filter,EKF)估计SOC存在的不足,在分析电池的充放电过程和电池的Thevenin等效电路模型基础上,基于粒子滤波算法(particle filter,PF)对电池的SOC进行了估计。实验结果表明,PF方法比EKF方法的准确度提高了5%,采用PF算法估计SOC更加准确有效,在实际应用中更有价值。  相似文献   

3.
为了解决锂电池内部参数时变性和SOC估计不准确等问题,提出了一种电池模型参数在线辨识与SOC联合估计算法.在二阶RC等效电路模型基础上该联合算法于宏观时间尺度下采用无迹卡尔曼滤波算法在线辨识电池模型参数,并联合微观时间尺度下的扩展卡尔曼滤波算法估计锂电池SOC,在UDDS工况下验证了该联合算法对锂电池SOC的准确实时估算.实验结果表明,传统离线参数辨识下的锂电池SOC估计算法的平均绝对误差和均方根误差分别为1.52%和1.80%,在线参数辨识下的锂电池SOC估计算法的平均绝对误差和均方根误差分别降低到0.90%和1.12%,EKF-UKF联合算法提高了SOC估算的精确性和鲁棒性.  相似文献   

4.
提出了一种基于交互式多模型(Interacting Multiple Model,IMM)和无迹粒子滤波算法(Unscented Particle Filter,UPF)的锂电池健康状态(State of Health,SOH)估计方法,针对目前SOH估计方法需求样本量大、不适用于全寿命周期结果跟踪等问题,建立了基于多项式模型、双指数模型和集成模型的IMM,通过UPF解决了重采样过程中粒子贫化的问题,根据滤波的结果对锂电池的SOH进行预测,实现了锂电池全寿命周期内的SOH精确估计.讨论了IMM的选型依据和建模方法,给出了详细的SOH估计算法,并通过仿真和实验对不同模型进行对比.仿真和实验结果表明,所提出的基于IMM-UPF的锂电池SOH估计结果的概率密度函数标准偏差仅为19,实现了高估计精度.  相似文献   

5.
传统电池荷电状态(SOC)估计中常用的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法仅适用于线性系统和高斯条件,虽然粒子滤波(PF)算法能用于非线性和非高斯系统,但PF算法在滤波更新时存在粒子退化现象,使粒子集无法表示实际后验概率分布,导致估计精度降低.采用改进的扩展粒子滤波(EPF)和无迹粒子滤波(UPF)算法对电池SOC进行估计,抑制了粒子权重退化.以Thevenin模型对电池进行建模,利用带遗忘因子的最小二乘方法进行模型参数辨识,结合改进后的滤波算法对电池SOC进行估计.实验结果表明,以UKF为建议密度函数进行重采样的UPF方法平均估计误差为0.71%,低于以EKF为建议密度函数的EPF方法平均误差(1.09%),两种方法的估计误差均小于PF估计误差(1.36%),有效抑制了粒子权重退化.  相似文献   

6.
针对锂离子动力电池的荷电状态(SOC)估计问题,以三元锂(MNC)电池为研究对象,选用Thevenin等效电路模型,建立电池模型的状态方程和观测方程,完成了带遗忘因子的递推最小二乘法(FFRLS)的理论推导。进行电池单体混合动力脉冲功率特性测试(HPPC测试),基于测试数据和FFRLS算法完成电池模型的在线参数辨识,并通过锂离子电池的端电压精度来验证算法的可行性;在此基础上,提出一种权值选择粒子滤波(WSPF)算法来实现锂离子电池SOC估计,该算法中全部粒子都参与粒子滤波过程,但只选择较优权重粒子用于电池状态估计,从而解决粒子滤波的粒子退化问题,提高粒子的多样性。通过HPPC测试和动态工况测试(DST)结果验证,WSPF算法的估计精度能控制在2%以内。与重采样粒子滤波(SIR-PF)算法相比,WSPF算法的估计精度高,鲁棒性好。  相似文献   

7.
为了提高锂离子电池SOC(state of charge)和SOH(state of health)的估计精度,采用自适应扩展卡尔曼粒子滤波(adaptive extended Kalman particle filter,AEKPF)算法估算SOC和SOH,该算法通过修正噪声可以解决运用EKF(extended Kalman filter)算法时的噪声误差累积问题,并且AEKF(adaptive extended Kalman filter)算法作为PF(particle filter)算法的建议分布用来实时更新粒子,可以改善单独采用PF算法时的粒子退化问题.为了提高SOC的估计精度,提出考虑电池的劣化特征,联合SOH实现对SOC的修正估计.在Matlab环境下的仿真结果表明:AEKPF算法与AEKF算法相比,可以得到更加准确的SOC和SOH估计值,而且AEKPF算法联合SOH可以有效提高SOC的估计精度,仿真绝对误差不超过±1%.  相似文献   

8.
为了提高传统卡尔曼滤波法估计锂电池荷电状态(SOC)的精度,在锂电池二阶RC等效电路模型基础上,根据隐马尔科夫模型(HMM)理论并采用遗传算法优化构造出了不同参数状态的电池模型。结合交互式多模型(IMM)算法与无迹卡尔曼滤波(UKF)算法进行SOC估计,提出了一种基于HMM的IMM-UKF算法估计锂电池SOC的方法。锂电池在线SOC估计实验表明,该方法比较其他估计方法有着更高的估计精度,平均绝对误差仅为1%。  相似文献   

9.
通过对不同温度和锂电池荷电状态(SOC)下电池内部参数测定和评估,分析了影响参数变化的环境因素,建立了可变参数的锂电池Thevenin模型.讨论了模型的分段依据以及相关参数的测定和拟合方法,并采用扩展卡尔曼滤波算法(EKF)对锂电池SOC进行估算,给出了基于温度修正的改进SOC估计方法.所提出的电池模型解决了现有算法中模型适用范围局限性的问题,仿真和实验结果表明,所建立的基于锂电池Thevenin模型的SOC估计方法在较宽的温度范围内都能够获得较高的估算精度.  相似文献   

10.
针对锂离子电池荷电状态(SOC)较难准确获取的问题,依据锂电池等效电路模型,建立起各参数与SOC的联系,利用脉冲放电的数据对模型进行参数辨识.通过Mat-lab/Simulink验证了模型的正确性和精确性.将扩展卡尔曼滤波算法(EKF)融合多新息理论,建立了多新息扩展卡尔曼滤波算法(MIEKF)估计电池SOC的方法,该方法通过对旧信息的重复使用提高了EKF的估计精度.在美国城市道路循环工况(UDDS)下分别采用EKF和MIEKF算法来估计锂电池SOC,两者估计的最大误差分别为0.0176、0.0087.实验数据表明MIEKF算法估计电池SOC更准确.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号