首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
荧光标记的叶酸修饰壳聚糖纳米载体研制   总被引:2,自引:0,他引:2  
制备荧光标记的叶酸偶联壳聚糖纳米粒,为抗肿瘤药物给药系统提供载体材料。通过叶酸活性酯与壳聚糖上的氨基反应,使叶酸与壳聚糖偶联。将异硫氰基荧光素与叶酸偶联壳聚糖进行化学嫁接,以离子交联法制成具有荧光的叶酸偶联壳聚糖纳米粒,并与肝癌HepG2细胞进行体外细胞实验。实验结果表明:叶酸活性酯用量和反应温度及试剂滴加速度是影响偶联比的主要因素;在叶酸活性酯与壳聚糖用量质量比为1:1,反应温度为30℃,滴加速度为2mL/min,反应时间为12h的条件下可得到偶联稳定的叶酸偶联壳聚糖;所制得的纳米粒粒径为290nm,形态规则,细胞荧光效果明显;此方法能用于制备荧光标记的叶酸修饰壳聚糖纳米粒载体。  相似文献   

2.
以巯基壳聚糖(TCS)为基因载体,采用离子交联法制备能用于基因口服研究的质粒DNA-巯基壳聚糖纳米粒(pDNA-TCS-NPs).分别以TCS质量浓度、三聚磷酸钠(TPP)质量浓度、pH值和转速为考察对象,以pDNA-TCS-NPs粒径和Zeta电位为评价指标,采用4因素3水平Box-Behnken 效应面法筛选最佳制备工艺,并对其外观形态,包封率等体外性质进行考察.结果表明:TCS质量浓度为0.80 mg·mL-1,TPP质量浓度为0.65 mg·mL-1,pH=5.3,转速为2 000 r·min-1是最优制备工艺,可制得粒径为(134.21±1.34)nm,Zeta电位为(24.36±0.29)mV,包封率在(80.26±0.56)%,形状规则且分散良好的pDNA-巯基壳聚糖纳米粒;Box-Behnken 实验设计可用于预测和优化pDNA-TCS-NP制备工艺优化筛选.  相似文献   

3.
为了提高抗肿瘤药物姜黄素载药效率,以姜黄素为单元合成新型姜黄素二聚体(CUR_2-TK),并以聚乙二醇-聚乳酸羟基乙酸共聚物(PEG-PLGA)为载体,通过单乳液溶剂挥发法,制备姜黄素二聚体缓释纳米粒,研究不同药物CUR_2-TK与聚合物PEG-PLGA的质量比(m(CUR_2-TK):m(PEG-PLGA))等对纳米粒性能的影响。研究结果表明:通过姜黄素二聚体构建的载药纳米粒具备极高的载药效率,在m(CUR_2-TK):m(PEG-PLGA)为3:1时,载药量和包封率分别达到(61.9±2.9)%和(80.1±3.8)%,且纳米粒形貌规整均一,粒径可控在50~100 nm之间,释药时间达4 d以上。  相似文献   

4.
利用1-乙基-3-(3-二甲基丙基)-碳二亚胺(EDC)介导反应合成了叶酸偶联的羧甲基壳聚糖(CMCT-FA),以阿霉素为模型药物,采用薄膜分散-pH梯度法制备CMCT-FA修饰的阿霉素纳米脂质体。考察了CMCT-FA修饰阿霉素纳米脂质体的包封率、粒径、ζ电位以及在不同pH释药介质中的释放特性。结果表明:CMCT-FA修饰阿霉素纳米脂质体的ζ电位较未修饰脂质体明显减小,但较CMCT修饰阿霉素纳米脂质体无明显差别;与阿霉素纳米脂质体和CMCT修饰的阿霉素纳米脂质体相比,CMCT-FA修饰的阿霉素纳米脂质体在酸性条件下的药物释放速率和药物释放量均有明显提高。  相似文献   

5.
庆大霉素/水杨酸/壳聚糖复方纳米粒的制备及体外释放   总被引:1,自引:0,他引:1  
通过壳聚糖与三聚磷酸钠的离子交联作用制备了具有拮抗庆大霉素耳毒性功效的庆大霉素/水杨酸复方壳聚糖纳米粒。用紫外分光光度计、纳米粒度仪和Zeta电位仪、透射电子显微镜、扫描电子显微镜、傅里叶变换红外光谱仪和X射线衍射仪等考察了壳聚糖纳米粒的粒径、zeta电位、形态、载药能力及体外释放行为。结果显示复方纳米粒为球形,平均粒径为40 nm;庆大霉素与水杨酸的包封率分别为(91.24±0.24)%和(80.75±0.15)%,载药量分别为(34.15±1.02)%和(38.35±0.48)%;在体外释放试验中,庆  相似文献   

6.
采用W/W型明胶-泊洛沙姆乳液体系结合二次冻干技术制备包载盐酸阿霉素的明胶-泊洛沙姆纳米脂质体。采用Sephadex G-50凝胶柱结合高压液相法建立盐酸阿霉素纳米脂质体的主药含量测定方法。通过溶液外观、粒径、Zeta电位、包封率的测定,表征盐酸阿霉素纳米脂质体的各项性能。结果表明,制备的盐酸阿霉素纳米脂质体呈现良好的圆整形态,颗粒不聚集,平均粒径为(187.02±9.56)nm,盐酸阿霉素纳米脂质体表面Zeta电位为-(16.8±1.43)mV,包封率达到(86.3±2.3)%。W/W型乳液体系结合二次冻干技术有利于制备高质量的盐酸阿霉素纳米脂质体。  相似文献   

7.
考察阿昔洛韦/赖氨酸壳聚糖纳米粒的理化性质。利用激光粒度分析仪、透射电镜、扫描电镜、高效液相色谱仪等测定载药纳米粒的形态、粒径、包封率和载药量,并考察载药纳米粒的体外释放行为。考察结果,微球呈类圆形,具有明显的核壳;载药的粒子平均粒径大小为107.96 nm;包封率为(61.24±0.68)%;载药量为(15.36±0.65)%;体外释放符合Higuchi模型。结论:阿昔洛韦/赖氨酸壳聚糖纳米粒理化性能具有良好的稳定性,符合实验设计要求。  相似文献   

8.
考察阿霉素果胶纳米粒(Doxorubicin-loading Pectin Nanopaticle,DOX-PEC-NP)的制备工艺及其体外抗癌作用.采用微乳法制备果胶纳米粒(Pectin Nanopaticle,PEC-NP),吸附载药制备载阿霉素果胶纳米粒,并用FTIR、DSC与X线衍射法对纳米粒的成型与载药机理进行探讨.采用溴化四唑蓝比色法(MTT法)、流式细胞仪及激光共聚焦显微镜评价DOX-PEC-NP对Hela、MCF-7、HepG2 3种癌细胞株的体外抗肿瘤活性.所制备的PEC-NP通过静电相互作用成型并吸附阿霉素载药.DOX-PEC-NP外观圆整,平均粒径为(353.66±2.86)nm,电位为(-20.17±0.67)mV,包封率为90.63%,载药量为17.18%.不同质量浓度的DOX-PEC-NP(阿霉素终质量浓度:0.25、0.50、1.0、2.0、4.0μg/mL)分别作用于Hela细胞、MCF-7细胞、HepG2细胞24、48、72 h后,相比于阿霉素原料药,抑制率升高18.19%~27.14%,均具有显著性差异(P0.05).流式细胞仪与激光共聚焦显微镜显示,DOX-PEC-NP更容易被肿瘤细胞摄取,发挥药效.阿霉素果胶纳米粒起效快,具有一定靶向作用,有望减少药物用量、降低毒副作用.  相似文献   

9.
采用乳化-溶剂蒸发法制备紫杉烷类PEG-PDLLA纳米粒,马尔文激光粒度仪测其粒径及Zeta电位;HPLC法测定纳米粒包封率和载药量;研究载药纳米粒在PBS中的释放动力学;初步评价载药纳米粒在MGC803、HeLa细胞中的摄取及细胞毒性。结果表明,通过包载形成的纳米粒的粒径为(13±1)nm,分布较集中。载体与药物的质量比在20∶1时,紫杉醇的均一性最好,卡巴他赛的包封率最高,达到88.77%。载药纳米粒具有较好的缓释作用,MGC803、HeLa细胞的存活率降低,与临床用注射剂效果相近。紫杉烷类PEG-PDLLA纳米粒的性质、释放、细胞抑瘤率都较好,可为开发紫杉烷类新型静脉注射制剂提供实验依据。  相似文献   

10.
采用离子交联法制备反式白藜芦醇纳米粒(t-Res-NPs),通过Box-Behnken效应面法优化制备工艺.从包封率、粒径、Zeta电位、载药量、纳米粒形态、缓释作用、稳定性等方面对t-Res-NPs进行体外评价.结果表明:t-Res-NPs粒径为(85.38±1.69) nm,Zeta电位为(19.93±3.25) mV,包封率为(88.31±0.59)%,载药量为(5.96±1.60)%;纳米粒形态呈圆形;t-Res-NPs具有良好的缓释作用,释放过程较为平稳,突释现象不明显;肠内菌对t-Res-NPs及反式白藜芦醇(t-Res)几乎无代谢作用,肝脏代谢酶对t-Res具有强烈的代谢作用,而t-Res-NPs可以有效地保护药物,减慢其代谢速率;t-Res-NPs可明显改善t-Res溶解度差、生物利用度低的缺点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号