首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以跟驰理论为基础,通过对由大、小两种车型构成的混合车流不同跟驰序列、不同组合概率的研究,得出了跟驰车头时距单车道路段多车型混合车流通行能力模型。研究表明,单车道路段多车型混合车流通行能力不仅与反应时间、车辆长度、车辆速度、制动性能有关,还与混合车流的车辆组成状况及跟驰序列有关,最后分析了各影响参数之间的关系。  相似文献   

2.
路段多车型混合车流通行能力   总被引:1,自引:0,他引:1  
利用概率论方法,通过对由多种车型构成的混合车流不同跟驰序列,不同组合概率的研究,得到了跟驰车头时距路段多车型混合车流通行能力模型.基于经典车头间距模型,通过对混合车流不同跟驰序列下最小车头间距的研究,得到了多车型混合车流的组合车头间距,进而得到了跟驰车头间距路段多车型混合车流通行能力模型.推广了由大、小2种车型构成的混合车流的通行能力模型.研究表明,路段多车型混合车流通行能力不仅与反应时间、车辆速度、车辆长度、制动性能等有关,还与混合车流的车辆组成状况及跟驰序列相关.最后实例分析了不同小型车混入率情况下路段通行能力的变化状况.  相似文献   

3.
为明确城市信号交叉口的车辆跟驰行为特性,基于自然驾驶试验数据,对车辆在减速、加速跟驰状态的车头间距、车头时距和相对速度进行了分布特征分析以及与跟驰速度的相关性分析。结果表明:减速跟驰状态的相对速度主要集中于[-3m/s,1m/s],加速跟驰状态主要集中于[-1m/s,3m/s];减速跟驰状态和加速跟驰状态的车头时距随后车跟驰速度变化趋势相同,确定了跟驰速度小于20km/h的车头时距阈值;去掉跟驰速度小于6km/h的数据后得到的减速跟驰、加速跟驰状态车头时距和车头间距均呈正偏态分布,车头间距集中于5-30m,车头时距集中于1.5s-3.5s;两种跟驰状态车头间距、车头时距的5th、50th、95th特征值与跟驰速度具有较强的相关性。  相似文献   

4.
跟驰模型是交通流理论的核心内容之一,但左转车辆在交叉口转弯过程中跟驰行为的特征表现,尚缺少基于实际数据的深入研究。针对这个问题,设计了信号交叉口左转车辆跟驰实验,基于高精度全球定位系统(global positioning system,GPS)和移动地理信息系统采集车辆跟驰行为相关数据,分析了信号交叉口不同转弯半径下左转车辆跟驰速度时变规律及分布本征。在全速度差(full velocity difference,FVD)跟驰模型的基础上,考虑跟驰车驾驶员对前导车加、减速反应的非对称性,构建了改进的全速度差模型,并采用遗传算法对模型进行了参数标定。最后,以跟驰车加速度为检验指标,利用实测数据对改进的全速度差模型加、减速度过程的准确性进行了分析与评价。结果表明:信号交叉口左转跟驰车辆的平均运行速度与转弯半径成正相关;在不同转弯半径下跟驰车速度出现频数最高的数值随着转弯半径的增大而增大;改进的全速度差模型,能更好地描述交叉口左转车辆跟驰过程,驾驶员对前导车减速行为的反应比对加速行为的更强烈。  相似文献   

5.
针对城市信号交叉口非机动车干扰机动车行驶的问题,通过调查分析各进口道机动车运行特性,对直行和直左的进口道机动车饱和车头时距及通行能力计算方法进行研究。首先,从进口道停车线出现4种不同跟驰模型的概率出发,构建车辆起始阶段混合车头时距模型,结合实际数据得到车头时距的修正系数;然后,分析采集数据得到非机动车数量对驶入信号交叉口的机动车混合车头时距的影响,采用回归分析法构建对应的特征模型;最后结合交叉口实际信号灯时间计算通行能力。研究结果表明:本文采用的通行能力计算方法与实测值的误差为2.5%,较《城市道路设计规范》法及HCM通行能力计算法的误差小,提高了信号交叉口通行能力计算结果的精准度。  相似文献   

6.
为得到信号交叉口的车辆运行特性和驾驶模式,开展实车驾驶试验,采集车辆在自然驾驶状态下通过信号交叉口的速度、加速度等运行参数,得到了车辆速度和纵向加速度的变化趋势、分布范围和统计特征值,分析了车速与行驶距离的相关性,确定了减速停车和起步加速的驾驶模式。结果表明:车辆驶入交叉口时在停车前100米范围内车速下降最明显;而绿灯启亮后,车辆在头50米内速度提升最明显。减速距离与初速度之间具有较高的关联度,加速距离和稳定速度之间的关联度略低。减速度总体上大于加速度,85分位减速度为1.19 m/s2,85分位加速度为1 m/s2。减速度峰值出现在停车前5秒内,而加速度峰值出现在起步后的3秒内。本研究可为跟驰模型和微观交通仿真提供参数标定值,为城市交叉口信号配时和交通管理提供实际数据参考和理论依据。  相似文献   

7.
为了缓解信号交叉口对交通流的阻断问题,基于车路协同技术提出了信号交叉口速度引导决策方法.考虑信号灯相位差异以及车辆可能面临的交通状况,制定了3个速度引导策略,并构建了改进车辆跟驰模型.通过数值仿真验证了所提模型的引导效果,并分析了引导区间长度对速度引导的影响.结果表明,与已有模型相比,改进车辆跟驰模型能够使更多的车辆在绿灯结束前快速通过交叉口,其他车辆通过速度引导平滑地减速停车或跟随队尾在红灯结束后不停驶通过信号交叉口,消除了车辆速度突变.此外,通过增加引导区间长度能够缓解信号交叉口车辆停车排队现象,进而提高了速度引导效果.改进车辆跟驰模型的可行性和优越性得到了证实.  相似文献   

8.
双车道公路无信号交叉口通行能力   总被引:2,自引:0,他引:2  
分析了现有的车头时距分布模型。基于对我国大量的双车道公路上运行车辆车头时距分布模式的调查,提出了改进的M3型车头时距分布模型,推导出双车道公路无信号交叉口处当主车道车流车头时距服从改进的M3型分布时次车道车流通行能力计算公式,得出了整个交叉口通行能力随主车道车流量的关系,从而可为交叉口的评价及应采取的管理措施提供依据。  相似文献   

9.
双车道公路无信号交叉口通行能力   总被引:1,自引:0,他引:1  
分析了现有的车头时距分布模型 基于对我国大量的双车道公路上运行车辆车头时距分布模式的调查 ,提出了改进的M 3型车头时距分布模型 ,推导出双车道公路无信号交叉口处当主车道车流车头时距服从改进的M 3型分布时次车道车流通行能力计算公式 ,得出了整个交叉口通行能力随主车道车流量的关系 ,从而可为交叉口的评价及应采取的管理措施提供依据  相似文献   

10.
通过对我国城市间大量存在的二级、三级等双车道公路上运行车辆头时距的研究,提出了一种改进的M3车头时距分布模型;并了对于采用让路规则等理交通的无信号交叉口,当主车道车流车头时距服从各种不同的分布下时,次车道车流的理论通行能力。  相似文献   

11.
为了解信号交叉口处绿灯充足时段交通违法监控是否对机动车车速及驾驶人驾驶行为决策产生影响,运用录像法,分别对经过青岛市黄岛区2类4个信号交叉口绿灯充足时段的机动车进行调查。采集了车辆经过交叉口的车速、加速度、所在车道等具体数据,对经过2类信号交叉口的车速及行为决策进行对比分析;并运用logistic回归模型建立信号交叉口驾驶行为决策模型。结果表明在绿灯充足时段,在装有交通违法监控的信号交叉口,进入交叉口前的机动车车速较低,且离散程度较小;进入装有监控的信号交叉口时,驾驶人采取匀速行为决策的比例比无监控情况高22.78%;较减速行为决策相比,加速和匀速行为决策与交通违法监控、车速及所在车道有关。  相似文献   

12.
公路信号平面交叉口安全服务水平研究   总被引:4,自引:0,他引:4  
为了客观评价公路平面交叉口的交通安全状况,提出了交叉口安全服务水平基本概念.分析了影响信号交叉口安全服务水平的因素,给出了信号交叉口安全服务水平评价方案.分别建立了基于机动车与机动车、机动车与非机动车、机动车与行人冲突点的安全服务水平主模型和基于交叉口几何特征、交通标志等次要影响因素修正模型,并由此得到信号交叉口安全服务水平总模型.根据多个信号交叉口的数据,把安全服务水平分为A~F等级,并验证了安全服务水平模型的合理性.应用安全服务水平模型评价实际交叉口的安全状况,得到交叉口危险度为11.7,安全服务水平为B级.评价结果表明该安全服务水平模型可以快速有效地评价信号交叉口的交通安全.  相似文献   

13.
公交站点车辆停靠对信号交叉口进口道交通延误模型   总被引:3,自引:0,他引:3  
为评价进口道具有公交停靠站信号交叉口的公交停靠影响和车辆运行效益,建立公交站点车辆停靠对信号交叉口进口道的交通延误模型.根据公交车停靠对不同类型信号交叉口交通延误影响情况的不同,将影响延误模型分为3类.针对最常见的影响延误模型,首先通过详细分析不同情况下公交车停靠对信号交叉口进口车辆的作用机理,研究分情况的交叉口进口车辆延误计算方法和计算公式;然后根据这些延误计算公式,利用积分方法,得到一套公交车辆停靠对交叉口进口车辆平均延误的计算公式.该公式能较好地计算进口道具有公交停靠站的信号交叉口进口车辆延误,为有效改造和合理布设公交站点提供理论基础与定量分析工具.  相似文献   

14.
张强  姚荣涵 《山东科学》2013,26(4):71-78
为了描述周期时长不相等的协调信号交叉口间路段上车辆排队的集结与消散现象,以关键交叉口周期时长为双周期交叉口周期时长的2倍为例,基于冲击波理论,针对两个相邻交叉口之间路段上的上、下行车流分别描述了车辆排队的各种模式并建立了车辆排队长度模型。为了验证模型的有效性,利用VISSIM交通仿真软件设计了模拟实验方案。考虑不同条件下信号红时差与交通流率的多种组合,通过仿真实验共得到35组数据,每组数据均获得84个有效数据点。结果显示,上、下行方向的车辆排队消散长度的计算值与模拟值的相对误差小于10%的周期分别占75.56%和95.00%;交叉口信号周期越长,其排队消散长度的平均值和最大值也相应地越长。研究结果表明,该模型可以用来估算周期时长不相等的协调信号交叉口间路段上车辆的排队长度,从而为交通控制方案的优化与调整提供理论依据。  相似文献   

15.
研究了典型信号控制交叉口左转电动自行车通行空间的交通特性,设计了左转电动自行车在典型信号控制交叉口通行空间交通特性的数据采集方案,系统地分析了典型信号控制交叉口左转同向并行电动自行车横向间距、左转对向电动自行车避让行为特性,得出如下结论:(1)电动自行车在典型信号交叉口左转时,在同一行车速度同一累计频率下,同一进口道左转同向电动自行车与机动车之间的横向距离要大于不同进口道同向左转电动自行车之间的横向间距;(2)当单位时间电动自行车流量≤0.52辆/s时,单位时间电动自行车流量与左转相位下避让行为个数大致呈线性正相关关系;当单位时间电动自行车流量0.52辆/s时,左转电动车相对会选择跟随并匀速行驶;(3)同向左转电动车的速度大多分布在0~9 m/s。  相似文献   

16.
为适应智能交通发展新趋势,改进了两个信控交叉口通行能力模型,使得新模型适用于联网自动车(connected autonomous vehicles,CAVs)环境。其一是最小延迟模型,通过最小化交叉路口的总延迟得出绿灯时间并根据流速得出周期长度,模型引入了每个车道或车道组的绿灯延时和具体排队服务时间的比率作为参数,该参数依赖于交叉路口处车辆到达的概率分布。其二是混合模型,包括两个模型,分别是估计排队服务时间的静态排队模型和从单位延时、流速、车道的限速、检测器长度中估计得到绿灯延伸时间的动态模型。数值算例表明,CAVs环境下新模型的交叉口延误显著减小,从而验证了两个通行能力模型的有效性,可为交管部门进行路口改造提供依据。  相似文献   

17.
为适应智能交通发展新趋势,改进了两个信控交叉口通行能力模型,使得新模型适用于联网自动车(connected autonomous vehicles,CAVs)环境。其一是最小延迟模型,通过最小化交叉路口的总延迟得出绿灯时间并根据流速得出周期长度,模型引入了每个车道或车道组的绿灯延时和具体排队服务时间的比率作为参数,该参数依赖于交叉路口处车辆到达的概率分布。其二是混合模型,包括两个模型,分别是估计排队服务时间的静态排队模型和从单位延时、流速、车道的限速、检测器长度中估计得到绿灯延伸时间的动态模型。数值算例表明,CAVs环境下新模型的交叉口延误显著减小,从而验证了两个通行能力模型的有效性,可为交管部门进行路口改造提供依据。  相似文献   

18.
为降低车辆需停车通过信号交叉口的可能性,减少停车时间,针对在三、四线城市交叉口区域实时的车辆排队长度数据不易或无法获得这一实际情况,提出车路协同环境下的车速引导策略。搭建了车载交通灯提醒系统,并对安徽省芜湖市衡山路-凤鸣湖北路交叉口的交通灯进行了数据采集。在实际数据的基础上,运用VISSIM软件进行仿真验证,结果表明,在高峰和平峰流量时车速引导策略均能有效降低单车行程时间,平均降低比率分别为9.2%和13.0%,且改善效果在平峰流量时优于高峰流量时。该车速引导策略提高了信号交叉口的交通效率,为车路协同环境下车速引导的实际有效运用提供了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号