首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
城市地铁建设将产生大量的盾构渣土,为探讨泥态废弃物的充分处理和资源化利用,本文以南京地铁盾构渣土为研究对象,进行无侧限抗压强度,侧限压缩和抗剪强度等室内试验得到其基本物理力学特性,分析其力学性质随风干天数增加的变化规律,并观测风干至恒重试样的微观结构形貌特点。结果表明:该区域盾构渣土成分主要以石英、方解石等为主,具有流塑性、天然含水率高和级配良好等基本物性特征,随着风干天数的增加,无侧限抗压强度不断增大,强度增量系数降低,压缩曲线的整体斜率增大,极限压应变前的压密阶段和屈服阶段的范围减小;压缩曲线在低压阶段能产生较大的压缩变形而高压阶段压缩变形有限,压缩性类别由高压缩性向中等压缩性转变;抗剪强度持续增大,内摩擦角增长幅度缓慢,而粘聚力增长幅度较急剧。微观结构表明试样具有大量的团聚体主要以边-面、面-面的形式接触,接触较为松散,外包颗粒,结构易发生错位移动,符合本文所测中高压缩性和低剪切强度特征。此研究成果能够为我国盾构渣土的再利用提供可靠的基础研究。  相似文献   

2.
屈服应力是反映材料和易性的重要特征参数之一。依托武汉地铁6号线老关村出入段盾构隧道工程,开展室内盾构渣土塌落度试验,推导考虑塌落度桶形状效应的渣土屈服应力改进预测模型,进而分析不同含水率、不同掺入比和不同角砾含量条件下渣土屈服应力变化规律。结果表明:角砾粘土的塌落度试验值与含水率、泡沫剂掺入比和角砾含量呈正相关关系;通过与实验结果及其他理论模型计算结果对比分析,验证了本文改进模型的有效性;角砾粘土屈服应力与角砾含量呈现负相关,与含水率呈现非线性负相关,与泡沫剂掺入比呈现线性负相关。相关研究成果可望为土压平衡盾构隧道渣土的合理改良施工提供理论基础,具有一定的理论价值和工程意义。  相似文献   

3.
邹超 《甘肃科技》2016,(2):87-90
为了改良土压平衡盾构法隧道施工中渣土性能指标,根据多个城市地铁土压平衡盾构法隧道施工的实践经验,结合设计和施工规范,对渣土性能指标的改良进行了试验。结果表明,渣土性能改良后,土体流塑性得到了改善,摩擦性显著降低,刀盘扭矩显著减小,盾构刀具磨损减少,支掌面稳定性提高。  相似文献   

4.
以常州地铁2号线某盾构区间穿越老黏土地层为项目背景,对刀盘在硬塑高强度、高韧性黏土中的"堵塞"风险进行了初步评估,并设计和进行了改良渣土锥体拉拔试验,该试验方法可用于评价黏性渣土的改良效果.研究表明:黏土含水率对锥体极限拉拔强度有显著影响,含水率越高,极限拉拔强度越小;分散剂在黏土稠度指数I_c0.75时能有效降低锥体极限拉拔强度,减小量在10kN/m~2以上;试验所用黏土在稠度指数I_c=0.5~0.75时黏附量较高,在500g/m2以上;添加分散剂后改良渣土的黏附量明显减小,关键在于黏土与分散剂充分混合.依据试验结果及现场经验提出评价改良后黏性渣土"堵塞"风险的方案,将黏性渣土按照极限拉拔强度和黏附量划分为4个"堵塞"风险等级.  相似文献   

5.
碱渣是氨碱法制碱过程中产生的工业废渣,作为地基回填土应用于工程建设可以有效解决占地和环境污染问题.关于碱渣土的基本物理、力学性质和静力学特性已开展了一些研究工作,但与天然沉积土相比,碱渣土通常具有更高的含水率与更大的孔隙比,在外部荷载扰动下的触变性是其应用于工程实践中需要解决的关键问题.以天津港原状碱渣土为研究对象,开展振动-静置试验和无侧限抗压强度试验,研究了不同振动时间、振动频率及静置时间下碱渣土的触变性,结果表明:振动时间、振动频率对于碱渣土强度影响显著,静置过程中土体强度随时间增长恢复速度逐渐减缓,且无法恢复至扰动前的强度.引入触变强度比率A量化振动-静置过程对土体强度的影响,提出考虑振动时间、振动频率及静置时间的碱渣土触变强度模型.在此基础上,进一步开展振动-静置循环试验,研究了不同振动-静置循环次数与静置时间下碱渣土触变强度的演化规律,发现随着振动-静置循环次数的增加,土体累积的结构性损伤逐渐增多,强度恢复程度将持续减小.通过对试验数据的统计分析,建立了振动-静置循环条件下的碱渣土触变强度演化模型,并用试验实测值验证了演化模型的正确性.  相似文献   

6.
砂卵石地层土压平衡盾构施工渣土改良试验   总被引:5,自引:1,他引:4  
砂卵石地层土压平衡盾构施工时需进行渣土改良,提高渣土的流塑性.针对成都砂卵石地层采用泡沫、膨润土和聚合物进行改良,进行室内塌落度试验、搅拌试验和泥浆黏度试验来确定配比.研究结果表明,钠基膨润土比钙基膨润土具有更好的膨化能力,且不发生分层,更适用于渣土改良.案例中膨润土单独改良的合理配比为泥浆质量分数14.3%,注入量体积比20%.泡沫改良时注入率受渣土含水率影响较大,土体含水率越大,泡沫最佳注入率越小.泡沫加膨润土共同改良比两者单独改良效果要好,选择泡剂质量分数为3%、泥浆质量分数为14.3%,添加量在某一个范围,有多种组合都可以满足要求;当泥浆注入量体积比为12%时,泡沫最优注入量体积比为15%~20%;当泥浆注入量体积比为6%,泡沫最优注入量体积比为30%~35%.当地下水丰富时,需要添加聚合物;正常情况下也可降低膨润土泥浆浓度,添加聚合物,来节省膨润土用量,从而降低工程成本.  相似文献   

7.
提出以剪切板扭矩评价土仓内渣土状态,然后通过模型试验明确该指标在土仓内黏性渣土堵塞前后的变化特征,最后建立实时判别土仓渣土堵塞的方法.研究表明:黏土层内盾构隔板附近渣土绕中轴线流动角速度出现差异后,渣土黏附趋势逐步向刀盘发展,同时土仓顶部发生渣土脱空.最终引发渣土堵塞.渣土堵塞风险可通过土仓顶部和下侧的渣土剪切扭矩的幅...  相似文献   

8.
为绿色低碳处置渣土并进行资源化利用,通过碱激发高炉矿渣(ground granulated blast-furnace slag, GGBS)作为绿色固化剂固化淤泥质工程渣土进行路基填料应用,探究不同固化剂掺量对固化土的综合性能影响规律,采用X射线衍射(X-ray diffraction, XRD)、扫描电镜(scanning electron microscopy, SEM)、核磁共振(nuclear magnetic resonance, NMR)对固化效果进行微观表征,用分形理论阐述微观孔隙特征揭示碱激发GGBS固化淤泥质渣土机理。结果表明:固化剂增加了固化土液塑限,降低了塑性指数,最优含水率随固化剂掺量增加呈现先减少后增大的趋势,最大干密度与之相反。掺入固化剂提高了渣土力学性能和水稳性,10%的掺量的固化渣土,强度、加州承载比(California bearing ratio, CBR)、水稳性以及渗透性分别为2.36 MPa、210.7%、81.3%和1.36×10-7 cm/s,各项指标均能满足路基填筑强度要求。微观机理表明,改良土的主要水化产物为(N...  相似文献   

9.
为解决地铁区间盾构施工中掘出的盾构渣土难以安置、污染环境、难以回收利用等问题,探讨通过利用盾构区间掘进渣土替代部分中砂制备新型同步注浆材料,实现盾构区间渣土固废资源化利用。以郑州市地铁4号线区段的盾构掘出渣土为研究对象,根据X射线衍射技术(XRD)分析的渣土化学成分组成,选择盾构渣土掺量和水胶比作为影响因素设计调整配比试验,根据不同条件下的试验现象和结果,对比分析地铁盾构渣土掺量及水胶比对材料工作性能以及力学性能的影响;参考规程以稠度、流动度、经时稠度损失、经时流动度损失、分层度、泌水率、结石率等指标评判材料的工作性能,并以3 d抗压强度、28 d空气环境成型抗压强度、28 d水下环境成型抗压强度、水陆抗压比等指标评判材料的工作性能,探讨盾构渣土制备同步注浆材料的可行性。研究结果表明:随着粉质黏土为主的盾构渣土掺量增加,材料的稠度、流动度等工作性能逐渐下降,但盾构渣土在60%替代掺量(质量分数)时能够优化材料级配、加强材料的抗压强度,在无外加剂强化条件下,3 d抗压强度可达到1.17 MPa,28 d空气环境成型抗压强度可达到2.66 MPa;且比表面积较大的盾构渣土改善了传统注浆材料结石率较低以及泌水的问题,结石率可达到96%以上,泌水率为1%左右,但需水量的增加使得该新型同步注浆材料的水胶比较传统注浆材料大,推荐合理的水胶比在1.2~1.3;在无水下抗分散剂强化的情况下,水陆抗压比指标略低于性能要求,其余性能指标均能够达到同步注浆材料性能的规程要求。通过该方法将盾构掘进渣土进行固废资源化利用,具有经济效益、社会效益,材料的性能可调节范围大,具备可行性。  相似文献   

10.
《河南科学》2017,(3):425-431
土压平衡式盾构施工在砾砂地层中容易出现螺旋排土器喷涌等问题,为了维持开挖面稳定,使盾构顺利掘进,需要对土压舱内的渣土进行改良.传统的渣土改良方案如加膨润土泥浆和气泡很难满足改良要求,文章通过对砾砂地层土颗粒的级配特征进行分析,发现砂砾地层缺少0.075~0.05 mm和0.25~0.01 mm粒组,通过粉土补充该粒组即在膨润土泥浆中掺入粉土对渣土进行改良,渣土的渗透系数大幅下降,改良效果良好.  相似文献   

11.
为解决土压平衡盾构及车站基坑开挖过程中产生大量废弃粉质黏土的现状,提出一种利用废弃粉质黏土调制泥浆改良盾构渣土的新方案。以沈阳地区粉质黏土为研究对象,通过添加不同的外加剂对粉质黏土泥浆进行改性,研究泥浆土水比、外加剂种类及掺量变化对改性泥浆的漏斗黏度、酸碱度、滤失量和胶体率的影响。通过扫描电镜(scanning electron microscope, SEM)研究了粉质黏土泥浆的微观改性机理。结果表明:纯粉质黏土泥浆自身稳定性差、泌水量大,无法有效改良渣土;碳酸钠和焦磷酸钠对粉质黏土泥浆的改性效果较好,合理掺入量为1%~3%;改性后的粉质黏土泥浆可有效改良砾砂地层渣土的塑流性,合理粉质黏土泥浆土水比为9∶11、焦磷酸钠掺量为3%,注入比为24%~28%。研究结果验证了粉质黏土泥浆用作盾构渣土改良剂的可行性,为废弃粉质黏土再利用提供了新思路。  相似文献   

12.
通过对不同改良措施后的混合料的稳定性和强度性质的研究,进一步加深对建筑渣土稳定混合料固化原理的认识,为建筑渣土的较好利用开创新的领域,也为市政道路路基工程提供一种新的材料。经过室内试验和试验段的现场试验,为该稳定土在道路工程中更为广泛的应用提供充足的理论依据,并对生产起到指导性的作用。本文就建筑渣土在市政道路路基工程中的应用做了相关探索。  相似文献   

13.
城市道路建筑渣土三级分类体系试验研究   总被引:1,自引:1,他引:0  
当前城市道路的翻新扩建工程产生了大量混杂固体废物的路基杂填土,此类建筑渣土成分组成复杂且构成比例极不均匀,对其进行适当处理后再用作路基填土可以大大降低工程建设成本且减少其对城市环境的污染。文章依据相关道路建设规范,通过现场调查取样和实验室测试分析,建立了一套城市道路建筑渣土三级分类体系,并提出了相关分类指标,进而为道路建筑渣土分类、土体工程利用价值评估提供了较为简便、直观、有效的判据。  相似文献   

14.
富水砂层土压平衡盾构施工渣土改良试验   总被引:8,自引:1,他引:7  
针对深圳的富水砂层,采用泡沫、膨润土以及高分子聚合物等添加剂,改良盾构施工渣土,进行现场坍落度试验.基于现场试验结果,通过对土样进行电镜扫描以及压缩、渗透等室内试验研究,分析了改性渣土细观结构以及渗透、压缩特性的变化.对添加剂改善富水砂性土的流塑性、保水性以及开挖面动态土压平衡机理作了较深入的探讨.结果表明,富水砂层中,采用质量比为1∶7、外掺量为8%~10%的膨润土进行渣土改良,可满足施工需求.  相似文献   

15.
建筑渣土车承载重物的行进速度、突变速度不可控。车辆在传感线圈上方停止或改变速度时,会形成较大的物理测量误差。传统方法将车辆底盘形状的三维信息转变为感应到的一维信号,模糊了实际的物理意义,一旦车速变化造成测量物理量模糊,会形成较大的测量误差。提出了一种多种群竞争免疫算法的建筑渣土车冒尖超载检测方法。对采样数据进行归一化处理,去除干扰信号的影响。利用多种群竞争免疫方法进行建筑渣土车冒尖超载信号的最优化计算,在多种群竞争机制中,引入两种适应性系数保证计算结果靠近真实物理信号。实验结果表明,算法能够有效提高建筑渣土车冒尖超载检测的准确性,保证了建筑渣土车的运输安全。  相似文献   

16.
当前城市道路的翻新扩建工程产生了大量混杂固体废物的路基杂填土,此类建筑渣土成分组成复杂且构成比例极不均匀,对其进行适当处理后再用作路基填土可以大大降低工程建设成本且减少其对城市环境的污染.文章依据相关道路建设规范,通过现场调查取样和实验室测试分析,建立了一套城市道路建筑渣土三级分类体系,并提出了相关分类指标,进而为道路...  相似文献   

17.
盾构机在地铁隧道施工中得以广泛的使用.由于盾构机在盾构掘进施工过程中对既有构筑物会产生一定的不利影响,因此有必要对盾构掘进施工进行力学分析.以某隧道实际工程为例,对盾构掘进过程中的构筑物以及引起的整个地表沉降进行有限元分析,得到了对类似工程有一定价值的结论.  相似文献   

18.
以福州绕城高速公路福州北互通内拆迁产生的建筑渣土为实例,对建筑渣土的颗粒组成、级配特征及组分特性等展开研究.并进行了填筑路基试验段的现场测试,探索了建筑渣土的振动压实特性,给出了路基利用建筑渣土填筑的合理松铺厚度和碾压遍数等参数.  相似文献   

19.
以一倾斜分层的渣土堆积层边坡模型为例,研究了不同雨量峰值分布的倾斜下对渣土堆积层边坡稳定性的影响.分析表明,受降雨影响渣土堆积层边坡前部坡体孔隙水压逐渐抬升,不同降雨条件促使地下水逐渐向前缘坡体渗流;降雨期的峰值集中在降雨的时期危险性从大到小排列总体规律是中后期>前期,其中不同雨型之间又有所差别.  相似文献   

20.
竹材物理力学性质的研究   总被引:11,自引:1,他引:10  
<正>竹材的物理力学性质是竹材重要的质量指标。本文研究了竹材的公定容积重,湿胀,维管束密度、顺纹抗压强度、顺纹抗拉强度,径向和弦向的抗弯强度和一些其他性质,获知了:1.竹材分割对顺纹抗压强度的影响,2.顺纹抗压强度与竹材含水率的关系;3.竹子年龄(A)对物理力学性质的影响;4.竹秆任意高度处(H_x)的物理力学性质;5.竹材的立地等级和营林措施对竹材物理力学性质的影响;6.不同竹种的物理力学性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号