首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
提出了一种L阵中基于降维多重信号分类(reduced dimensional multiple signal classification, RD-MUSIC)的二维波达方向(two dimensional direction of arrival,2D-DOA)与频率联合估计算法。该算法首先通过一维局部谱峰搜索得到接收信号频率的估计,然后利用频率估计过程中得到的参数矩阵,获得信号的2D-DOA估计。与需要进行多维全局搜索的传统MUSIC算法相比,所提算法只需一维局部搜索,算法复杂度较低。该算法同时适用于均匀L阵和非均匀L阵,且能获得配对的二维角度与频率估计。其角度与频率估计性能接近于传统的MUSIC算法以及平行因子方法,且优于借助旋转不变性估计信号参数算法和传播算子算法。  相似文献   

2.
目标在三维空间复杂转动时,传统的逆合成孔径成像算法得不到聚焦的二维像。通过对复杂转动目标等效散射中心相位变化的分析,提出了一种基于奇异值分解的成像算法。该算法首先估计多个散射中心的相位历程,获得相位矩阵|然后对相位矩阵进行奇异值分解,并根据奇异值之间的关系对目标是在三维空间转动还是在二维平面内转动进行判断。根据判断结果分别进行处理:当目标在平面内转动时得到目标的二维像|当目标在三维空间转动时得到失真的三维散射中心模型。仿真及实测数据处理结果验证了所提算法的有效性。  相似文献   

3.
针对传统几何参数估计方法对成像质量要求较高,对低信噪比、稀疏孔径的散射回波数据估计精度低的问题,选择球头锥目标为研究对象,提出了一种使用几何参数散射模型和正交匹配追踪(orthogonal matching pursuit, OMP)算法相结合的方法,简化了计算过程,提升了参数估计精度。该方法首先根据先验信息确定代估参数的取值范围,并等间隔地在取值范围内设置参数网格,再根据对应的参数值计算散射模型,生成二维像,之后通过OMP算法拟合回波信号的成像结果,得到精确的几何参数估计值。所提方法实现了在原始回波数据质量较差的情况下,对球头锥类目标的几何参数精确估计与重构。  相似文献   

4.
结合干涉雷达的天线结构和二维波达方向(direction of arrival, DOA)估计方法,提出一种基于二维干涉式幅相估计的分布式相参阵盲DOA估计算法。利用二维干涉式幅相估计算法的空间谱和模型阶数选择准则获得目标个数和目标方向余弦的粗估计;使用子阵间的相位中心偏移来获得目标方向余弦的精估计;针对分布孔径带来的测角模糊问题,采用双尺度解模糊算法实现分布式阵列的高精度方向估计。仿真结果验证了分布式相参阵的高精度测角性能及所提算法的有效性,也验证了分布阵DOA估计中存在基线模糊门限。  相似文献   

5.
针对现有多输入多输出(multiple input multiple output, MIMO)雷达稀疏恢复成像算法中存在的运算量大、对扩展目标成像质量低的问题,提出一种基于块稀疏矩阵恢复的MIMO雷达扩展目标高分辨成像算法, 通过引入目标块稀疏特征, 提高对空间扩展目标的成像质量。首先, 通过构造距离向和方位向感知矩阵, 建立目标散射系数估计的块稀疏矩阵恢复模型。然后, 采用分块二维序列一阶负指数(sequential order one negative exponential, SOONE)函数对目标块稀疏特征进行提取。最后, 利用梯度投影算法对块稀疏矩阵范数优化问题进行求解, 在欠采样条件下得到目标高质量图像。相比于传统成像算法, 所提算法可以在实现对扩展目标高分辨成像的同时, 降低数据采样量, 且具有较高的准确性、鲁棒性和较低的运算量。仿真实验验证了所提成像算法的有效性。  相似文献   

6.
在弹载合成孔径雷达(synthetic aperture radar, SAR)下降段成像中,由于弹体存在较大的俯冲下降速度和加速度,回波信号的二维频谱表示式难以有效获得,给后续成像处理带来困难。针对该问题,提出了一种基于双曲线性修正斜距模型的弹载SAR成像方法,通过构造双曲函数形式的斜距表示式并引入线性修正因子,对弹载SAR斜距历程进行合理近似|并以修正后的斜距式为基础,利用驻相点原理(principle of stationary phase, POSP)直接求解SAR回波信号的二维频谱|随后根据该频谱表示式设计有效的弹载SAR频域成像算法。该方法下的频谱推导较为简洁,所获得频谱的数学表达式清晰直观,利于成像分析和后续处理。最后的点目标成像仿真验证了该方法的有效性。  相似文献   

7.
针对系统相位误差导致的捷变频雷达目标回波信号相参积累性能下降问题, 构建了系统相位误差下捷变频雷达目标回波信号相参积累模型, 并基于目标的距离-速度二维稀疏性建立了最小1范数优化模型, 提出一种基于交替方向乘子法的系统相位误差估计与目标场景稀疏重构联合处理算法, 实现了系统相位误差和目标参数的精确估计。仿真结果表明, 在信噪比为20 dB的情况下, 该方法能够精确估计系统相位误差, 其估计误差在2°以内。同时,相比于逆合成孔径雷达相位自聚焦算法, 所提算法重构性能和计算效率均得到改善, 目标重构幅度均方差提高了10 dB, 运算时间减少到1/2。  相似文献   

8.
基于AGIMM的临近空间机动目标跟踪滤波算法   总被引:1,自引:0,他引:1  
由于临近空间高超声速目标的机动形式复杂,单一模型很难满足高精度跟踪的需要。因此需要使用基于多种模型进行交叉耦合的交互式多模型算法,这种算法特点与临近空间目标高速、高机动特性相适应。提出了一种自适应网格交互多模型跟踪算法用于临近空间高超声速机动目标的跟踪问题。所提方法能够处理自适应时变模型集合,随时调整当前时刻使用的模型数量,相比于固定结构交互式多模型算法极大减少了计算量,计算效率和跟踪精度更高,数值仿真结果验证了所提算法的有效性。  相似文献   

9.
针对外辐射源雷达中,传统基于压缩感知(compressed sensing,CS)的超分辨波达方向(direction of arriving,DOA)估计方法在阵列天线存在幅相误差时测角精度差和目标分辨性能低的问题,提出一种基于总体最小二乘(total least squares,TLS)-CS的超分辨DOA估计方法。首先,通过奇异值分解方法求解TLS信号模型来修正阵列天线的幅相误差;然后利用贪婪迭代追踪算法进行CS稀疏重构得到目标的方位信息。仿真分析表明,当阵列天线存在幅相误差时,本文所提方法具有良好的超分辨DOA估计性能。  相似文献   

10.
多普勒波束锐化(Doppler beam sharpening, DBS)技术可以快速地对广阔地面场景进行成像,但存在成像分辨率不高的问题。简单介绍了DBS的成像原理,建立了方位向超分辨的信号模型,并在此基础上提出一种新的超分辨广域成像算法。该算法将脉压后的回波信号建模为一系列不同多普勒频率散射点的叠加,利用幅度相位估计(amplitude and phase estimation, APES)方法对脉压后的数据进行多普勒分析,进行方位向的成像。仿真结果与实测数据表明,所提算法可以获得清晰的广域超分辨图像。  相似文献   

11.
为实现有限脉冲快速逆合成孔径雷达(inverse synthetic aperture radar,ISAR)稀疏成像,利用ISAR目标块状结构特征,提出一种基于多量测向量(multiple measurement vectors,MMV)模型的块稀疏信号重构ISAR成像算法。首先,构建MMV稀疏成像模型,将ISAR成像转化为MMV块L0范数的稀疏重构问题。其次,选用负指数函数序列作为平滑函数去近似块L0范数,通过构建一个递减的参数序列,对平滑函数优化求解,采用梯度投影方法将所求解投影到可行解空间。最后,增加修正步骤,确保沿着最速下降方向对块稀疏信号优化求解。仿真结果验证了本文算法在成像时间和成像质量方面具有优势。  相似文献   

12.
针对目前关于目标径向加速度估计的算法存在着采样频率过大及短时条件下精度不高的问题,提出了一种基于压缩感知(compressive sensing, CS)的机动目标径向加速度估计方法。该方法可以在不损失参数估计精度的条件下,用远低于奈奎斯特采样定理要求的采样速率进行采样。仿真实验验证了该方法有效性,并与基于分数阶傅里叶变换(fractional Fourier transform, FRFT)估计目标径向加速度方法进行了比较。仿真结果表明,该方法不仅所需的信号积累时长和采样速率大大降低,并且在估计精度方面也有明显的提高。  相似文献   

13.
为解决复杂电磁环境下跳频(frequency hopping, FH)参数的盲估计问题,提出了基于时频方差聚类的算法。考虑在低信噪比(signal-to-noise ratio, SNR)和定频干扰同时存在的情况下,通过短时傅里叶变换(short time Fourier transform, STFT)将信号变换到时频域,利用遗传算法对信号的时频区间进行提取,根据时频方差对其进行k-means聚类,消除噪声和定频干扰并提取时频脊线,然后运用Haar小波对该时频脊线进行奇异点检测,进而估计出FH信号的FH周期、跳速和FH频率等参数。仿真结果表明,所提算法在SNR低于-5 dB且存在定频干扰的情况下,能够实现对FH参数的精确估计,参数估计正确概率达到90%以上。  相似文献   

14.
建立了基于线性调频信号脉冲压缩技术和双天线干涉技术的距离-干涉二维雷达成像模型;在论证成像理论和成像算法的过程中,突破传统仅用单频信号进行干涉成像理论推导的方法,将线性调频信号形式引入到干涉成像的公式推导中来;发现当线性调频信号不能视为窄带信号时,采用原有干涉成像法进行干涉测量时结果存在偏差;指出了这种偏差的理论来源,给出仿真结果,提出坐标参数估计自回归算法对此偏差进行补偿,得到了令人满意的补偿精度。  相似文献   

15.
基于压缩传感的MIMO-OFDM水声通信信道估计算法   总被引:1,自引:0,他引:1  
充分利用水声信道的稀疏特征,提出一种基于压缩传感理论的多输入多输出正交频分复用(multiple-input multiple-output orthogonal frequency division multiplexing, MIMO-OFDM)水声通信系统信道估计算法。在MIMO-OFDM水声通信系统模型的基础上,考虑Doppler频移的影响设计符合压缩传感理论框架的过完备字典,利用一系列非正交基在过完备字典下描述待重建信号。通过对比分析基追踪降噪、丹茨格选择器以及正交匹配跟踪3种算法的信道估计性能,进一步证明了算法的有效性。仿真实验结果表明,基于压缩传感的稀疏信道估计算法具有优于传统最小二乘算法的信道估计精度,并且在最小二乘矩阵求逆奇异的情况下仍能准确地估计出信道参数;在计及Doppler频移的影响时,直接压缩传感估计优于补偿后的压缩传感估计方法。  相似文献   

16.
基于关联计算成像原理, 提出一种适用于相控阵雷达的前视成像技术, 其随机移相是由配置二维相控阵雷达来实现的.为了模拟经典量子关联成像中的随机涨落光场以实现测量的不相关性, 需要控制二维相控阵辐射出的波前呈现随机幅相波动特性, 再结合压缩感知(compressive sensing, CS)的模型框架与稀疏贝叶斯学习(sparse Bayesian learning, SBL)算法解决关联耦合问题以实现目标场景的方向维和俯仰维超分辨成像。甚至可以在不需要雷达与目标相对运动的情况下, 结合宽带信号体制实现雷达前视超分辨三维成像。仿真实验和实测数据验证了其原理的正确性和算法的有效性。  相似文献   

17.
压缩感知理论中信号的重建要求量测矩阵与稀疏变换基之间的互相关性要尽可能小。以降低二者互相关性为目的,研究了一种改进的基于变步长梯度下降的量测矩阵优化方法。该方法利用梯度下降法更新步长,并基于模拟退火中的降温思想引入学习速率因子来进一步调节步长的变化,提高算法的收敛速度,改善算法的性能。仿真结果表明,使用变步长梯度下降法优化后的量测矩阵与稀疏变换基的互相关系数在零附近的分布更加集中,量测矩阵的优化速度快并且重构图像的峰值信噪比提高。因此,所提方法优化所得的量测矩阵无论是降低互相关性还是提高图像重建质量都具有良好的性能。  相似文献   

18.
针对现有的固体氧化物燃料电池(SOFC)模型过于复杂,难以满足工程上对SOFC系统实时控制设计的需要,提出了利用遗传算法(GA)优化径向基函数(RBF)神经网络实现对SOFC电堆建模。在建模过程中,利用遗传算法优化RBF神经网络的输出权值及高斯基函数的中心向量和基宽向量,采用优化后的参数作为网络初始值,然后利用梯度下降法对各参数进行调整。通过仿真对该建模的有效性和建模精度进行了检验。  相似文献   

19.
提出了一种基于接收信号循环平稳特性(CS)和基于旋转不变技术的参数估计方法(ESPRIT)的多输入多输出正交频分复用(MIMO-OFDM)系统多频偏盲估计算法。理论分析表明,算法无需训练序列或导频符号,可估计每对收发天线间频偏,适用于任意分布加性平稳噪声下的频偏估计。计算机仿真验证了算法在低信噪比下仍可取得稳定性能,并在传统单入单出(SISO)OFDM系统中也可获得较好的性能。  相似文献   

20.
提出一种双基地多输入多输出(multiple input multiple output,MIMO)雷达相干多目标角度快速估计算法。采用单次快拍数据构建的一组Toeplitz矩阵重构出新的协方差矩阵,使得矩阵的秩等于目标的总个数;通过矩阵变换使得变换后的协方差矩阵满足centro Hermitian性,即可利用酉变换将复矩阵转化为实矩阵进行实数域的参数求解,采用旋转不变信号参数估计(estimation of signal parameters via rotational invariance technique, ESPRIT)算法即可准确估计出对应的目标角度。通过仿真表明:所提算法能够实现相干目标源的角度估计且参数自动配对;降低了复矩阵特征分解所带来的巨大运算复杂度,具有更高的参数估计精度和算法稳健性;同时能够对移动目标进行角度跟踪,具有良好的跟踪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号