首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
水稻的包穗现象主要是由倒一节间缩短造成的. 阐明包穗形成的分子机制, 对解决水稻不育系的包穗问题, 创造水稻新种质具有重要意义. 我们在籼稻品种明恢86 的组织培养后代中获得了1 个包穗突变体, 命名为esp2(enclosed shorter panicle 2), 其穗部被剑叶叶鞘完全包裹, 倒一节间几乎完全退化, 而其余各节间长度则没有明显改变. 遗传分析表明, esp2 受一对隐性基因控制, 能稳定遗传且不受遗传背景的影响. 显然, ESP2 是控制水稻倒一节间发育的一个关键基因. 利用esp2 与粳稻品种秀水13 杂交的F2 群体以及SSR 和InDel 标记, 将ESP2 精细定位在1 号染色体短臂末端一个14 kb 的区域内. 根据水稻基因组序列的注释, 该区域内只存在1 个完整的基因, 亦即一个假定的磷脂酰丝氨酸合成酶(putative phosphatidylserine synthase)基因. 对野生型和突变体的测序分析结果表明, 该基因内部插入了一个5287 bp 的反转座子序列. 因此, 我们将该基因作为ESP2 的候选基因. 本研究结果为ESP2 基因的克隆和功能分析奠定了基础.  相似文献   

2.
水稻叶片形态相关突变体的挖掘是进行水稻功能基因组学研究和株型改良的重要基础.本研究从60Co-γ辐射的籼稻粤丰B后代中鉴定一个卷叶突变体,命名为rl11(t),该突变体表型为株高降低、叶片卷曲变窄、叶脉数目减少且发育异常,同时对生长素的敏感性降低.遗传分析表明,该突变性状受一个隐性单基因控制.利用SSR标记将卷叶基因定位在位于水稻第4染色体上RM6089和RM124之间,在该基因附近区域发展了32对新的STS标记,将Rl11(t)精细定位在BAC克隆AL606645上STS4-25和STS4-26之间,物理距离约为31.6kb,为最终克隆目标基因奠定了基础.  相似文献   

3.
突变体es-t 是经EMS诱变处理日本晴后筛选获得的, 该突变体主要表现为叶片从苗期开始黄化, 叶绿素含量显著降低, 随着其生长发育发黄的叶片伴有铁锈色的小斑点, 尤以叶尖和叶缘为甚, 表现严重的早衰现象, 故将之命名为es-t (early senescence-temporary). 扫描电子显微镜显示, 突变体叶片表面比野生型的光滑, 且气孔周围缺乏硅质化突起; 另外, 突变体的叶绿体发育不正常, 含有大量大颗粒的淀粉粒; 组织切片则显示突变体的厚壁细胞及维管束的发育表现异常. 遗传分析表明, es-t 为新发现的早衰突变体, 受一隐性基因控制, 借助图位克隆的手段将之定位于42.1 kb 的物理区间内, 为进一步克隆该基因并阐明叶片早衰的分子机制奠定基础.  相似文献   

4.
籽粒形状与大小是影响水稻产量和品质的重要因素. 本研究在经60Co-γ射线辐射粳稻品种台北309的后代中分离获得一个三角颖突变体tri1(triangular hull 1). 与野生型相比, tri1籽粒颖壳呈三角形, 粒厚增加, 蛋白质含量升高, 株高和千粒重降低. 遗传分析表明, 该突变性状能稳定遗传, 受一对隐性核基因控制. 采用图位克隆法将目的基因精细定位于水稻第1染色体长臂上分子标记CHR0122与CH0127之间, 物理距离约47 kb, 并与分子标记CHR0119共分离. 在该区域内共有6个候选基因, 测序分析表明tri1突变体中一个释义基因OsMADS32的第3外显子内缺失了一个碱基A, 导致移码突变和翻译提前终止; RT-PCR分析表明, OsMADS32主要在水稻幼穗中表达, 在根、茎、叶和发育的种子等组织中的表达量极低, 说明OsMADS32基因与花的发育与关. 据此, 推测OsMADS32基因可能为TRI1的候选基因.  相似文献   

5.
水稻散生突变体的遗传和基因定位研究   总被引:13,自引:1,他引:12  
李培金  曾大力  刘新仿  徐聃  谷岱  李家洋  钱前 《科学通报》2003,48(21):2271-2274
分蘖角度是构成水稻理想株型和高产育种的重要农艺性状之一. 通过对水稻散生突变体的遗传学分析认为, 该散生表型受一隐性核基因控制, 与已报道的水稻散生突变体la等位, 故将此突变体命名为la-2, 而原突变体被重新命名为la-1. 利用la-2与w11和浙福802分别杂交产生的F2群体对LA位点进行遗传定位, 发现其与第11号染色体上的微卫星标记RM202和RM229连锁, 遗传距离分别为10.0和8.0 cM. 通过进一步在两标记间发展的6个新的分子标记, 将该基因精确地定位于约0.4 cM的区间. 为进一步克隆LA基因和探讨水稻分蘖角度的控制机制奠定了良好的基础.  相似文献   

6.
一个水稻窄叶突变体的鉴定和基因定位   总被引:6,自引:1,他引:5  
从粳稻品种“中花11”转基因后代中发现了一个窄叶突变体. 突变体表现为植株矮化、生育期延迟、叶片变窄及内卷和结实率降低等一系列突变表型. 窄叶突变体的剑叶在饱和光下净光合速率显著低于野生型, 在灌浆期剑叶的气孔导度和蒸腾速率也明显低于野生型. 遗传学分析表明, 该窄叶突变体表型受一对隐性核基因控制. 通过对突变体T1代和T2后代的分子检测发现, 该突变体表型非T-DNA插入引起. 利用籼粳杂交F2群体对突变体位点进行了基因定位, 将其定位在第12染色体长臂上SSR标记RM7018和RM3331之间. 与经典的形态标记nal3(cul3)位于相同染色体区段, 故将该突变体暂定名为nal3(t). 随后, 利用已公布的水稻序列和SSR标记, 开发了6对新的STS标记, 进一步将窄叶基因nal3(t)定位在NS10和RH12-8之间, 遗传距离分别为0.58和0.26 cM, 物理距离约136 kb, 为进一步克隆nal3(t)打下了基础.  相似文献   

7.
一个水稻短生育期突变体sgp(t)的遗传分析及基因定位   总被引:1,自引:0,他引:1  
在优良迟熟恢复系明恢86的转基因后代中, 发现了一个非T-DNA插入引起的短生育期突变体(暂命名short growth period, 简称sgp(t)). 该突变体对光周期反应不敏感, 在不同生态区域与不同播种期, 平均抽穗期(40.9±2.1)~(62.4±5.2) d, 比野生型明恢86早35~50 d. 通过对sgp(t)突变体与29个不同遗传背景的亲本(包括感光和非感光的籼稻、粳稻及爪哇稻品种)杂交后代抽穗期分析, 结果发现, 在福州市夏季种植(4月30日播种), F1抽穗均表现较迟熟亲本 早, 而较sgp(t)略迟, 平均抽穗期(52.0±1.3)~(63.4±2.3) d, 表明sgp(t)是一个不完全显性突变体, 能够显著地缩短水稻的生育期. 进一步分析sgp(t)突变体与野生型明恢86, 93-11, 闽恢3301和博白B等4个品种的杂种F2群体抽穗分布发现, 分离群体后代中出现极早熟、较早熟和迟熟3种类型, 其极早熟和较早熟植株数之和与迟熟植株数之比符合3:1, 进一步表明sgp(t)由一对不完全显性基因控制. 以F2代(sgp(t)×93-11)中的极早熟株和迟熟株为定位群体, 应用微卫星标记将sgp(t)基因定位在第6染色体的RM3628和RM439之间, 随后利用已经公布的水稻基因组序列, 在sgp(t)基因附近区域新开发了6个标记, 将sgp(t)基因进一步定位在NSSR0617~NSSR0683之间, 遗传距离分别为0.5和0.6 cM, 物理距离约436 kb. 定位结果显示sgp(t)不同于目前报道的所有早熟和迟熟基因, 是一个控制水稻生育期的新基因.  相似文献   

8.
一个水稻动态窄叶突变体的鉴定和基因定位   总被引:5,自引:0,他引:5  
叶片形态是作物的重要性状, 阐明控制作物叶片形态的遗传机理有助于在作物育种中性状的改良, 提升作物的产量潜力. 本研究通过辐射获得一个水稻动态窄叶突变体(暂命名为dynamic narrow leaf 1, dnl1). 形态鉴定表明, 与野生型品种93-11相比, dnl1在苗期叶片显著变窄、变短, 而成熟期无显著差异; 同时, dnl1抽穗期延迟, 株高变矮, 籽粒数减少, 结实率降低. 遗传分析表明窄叶性状受1对隐性基因控制, 基因初步定位表明Dnl1位于第1染色体长臂的d15和d20标记之间, 遗传距离分别为0.9和2.2 cM. 进一步利用已经公布的SSR标记和发展的STS标记将其定位于STS标记M1-Z47和M1-Z42之间, 与d17, M1-Z41, M1-Z43及M1-Z49共分离, 物理距离为172 kb, 为克隆Dnl1奠定了基础.  相似文献   

9.
衰老是一个主动的过程,包括细胞结构、新陈代谢、基因表达有序发生变化,对植物生存繁衍具有积极的意义,但早衰则对农业生产会产生重要影响,不利于经济性状的获得,研究早衰的分子机理具有重要的意义.利用甲基磺酸乙酯诱变恢复系缙恢10号获得了一个叶片早衰突变体,5叶期前叶片正常绿色,从6叶至剑叶每张叶片从叶尖到叶基部逐渐衰老,叶绿体膜结构破坏、光合色素含量和光合能力及可溶性蛋白含量显著下降,SOD酶活性异常.遗传分析显示该突变性状受一显性单基因控制,暂命名为psl3(presenescing leaf3).利用分子标记将PSL3基因定位于第7染色体标记c7sr1与ID10之间,物理距离为53.5kb,为该基因的图位克隆奠定了基础.  相似文献   

10.
利用陆地棉遗传背景的海岛棉染色体16置换系材料Sub16和陆地棉多基因标记系T586创建了含1259个单株的F2作图群体, 结合本实验室最新的栽培四倍体棉种种间分子遗传图谱上染色体16的标记信息, 利用分子标记技术, 对红株基因R1进行精细定位. 在F2分离群体中, 红株性状分离比符合孟德尔1:2:1的分离, 进一步证明该性状是由一不完全显性单基因控制. 利用JoinMap 3.0连锁分析软件, 使用含237个单株的F2小群体完成红株基因R1的初级定位, 进一步利用含1259个单株的F2大群体将该基因精细定位在NAU4956和NAU6752之间, 与最近标记的遗传距离为0.49 cM. 研究结果为进一步克隆该基因及培育红色彩棉转基因品种提供了研究基础.  相似文献   

11.
小麦显性矮秆基因Rht 10与着丝点间遗传距离的测定   总被引:3,自引:0,他引:3  
刘秉华 《科学通报》1993,38(12):1128-1128
矮变一号是西安市农业科学研究所从地方品种矮秆早中选出的矮秆基因突变体,株高仅25cm左右.该突变体的矮秆性呈显性遗传,其显性单基因Rht10位于4D染色体短臂上.在已知的矮秆基因中,Rht10矮秆基因的降秆作用最强,杂交后代向高矮两极分离,其育种价值尚未得到开发,但作为标记性状却十分理想.矮败小麦就是以该矮秆基因(Rht10)为标记的  相似文献   

12.
水稻(Oryza sativa L.)叶形和叶色直接影响光能利用,最终影响其产量和品质,是水稻重要的农艺性状.通过甲基磺酸乙酯诱变籼稻缙恢10号发现了1个遗传稳定的水稻条纹窄叶突变体,暂命名为nsl1.nsl1在苗期叶片呈浅白色,拔节期后出现平行于叶脉分布的白色条纹,而且其叶片显著窄于野生型缙恢10号.nsl1突变体的白色条纹部位细胞内部叶绿体严重解体,叶绿素含量显著下降.荧光参数F0,Fv/Fm,?PSⅡ,qP和ETR均显著低于野生型,光合效率显著降低.nsl1的叶形叶色及生理的变化最终引起nsl1突变体株型矮小和产量相关性状的明显减小.该条纹窄叶性状受一对单隐性核基因控制,被定位于第3染色体长臂InDel 16与InDel 12之间,物理距离为204 kb,在该区域尚未发现与已报道的叶色或窄叶相类似的基因.本研究为NSL1基因克隆和功能分析奠定了良好基础.  相似文献   

13.
水稻类病变突变体lmi的鉴定及其基因定位   总被引:4,自引:0,他引:4  
水稻类病变突变体lmi(lesion mimic initiation)是从γ射线诱变的籼稻品种中籼3037的后代中发现的,属于起始型的类病变突变体. 无菌培养、台盼蓝染色及遮光实验表明, 该突变体受光照控制细胞自主性死亡. 遗传分析表明, 该突变性状由一对隐性基因控制. 利用lmi和93-11杂交的F2群体对lmi基因进行初步遗传定位, 发现该基因定位于水稻第8号染色体着丝粒附近的两个微卫星分子标记RM547和RM331之间, 与两者遗传距离分别为1.2和3.2 cM. 进一步利用这两个标记之间发展的CAPS标记 C4135-8, C4135-9及C4135-10对lmi基因进行精细的遗传定位, 结果表明, lmi基因与标记C4135-10共分离. 这一结果为克隆lmi基因奠定了基础.  相似文献   

14.
“矮败”小麦的选育及利用前景   总被引:34,自引:1,他引:33  
刘秉华 《科学通报》1991,36(4):306-306
我国发现的太谷核不育小麦是受显性单基因控制的雄性不育材料,它的显性雄性不育基因Ms2(原基因符号为Ta1)位于4D染色体短臂上.太谷核不育小麦作为一个遗传改良工具已广泛用于我国的小麦育种实践.矮变一号是陕西省西安市农业科学研究所从小麦品种矮秆早中选出的矮秆天然突变体,是小麦的重要矮源之一.遗传研究表明,矮变一号的矮秆性受显性单基因Rht10控制,该基因也位于4D染色体短臂上.为了拓宽太谷核不育小麦的应用范围和提高它的应用效能,我们以矮秆为标记性状,开展了太谷核不育小麦附加标记性状的研究.  相似文献   

15.
叶片是水稻主要的光合器官,适度卷曲有利于保持植株叶片直立而不披垂,增加中、下层叶片透光率,从而改善群体光照条件,是理想株型的重要组成,对水稻高产育种具有重要意义.利用甲基黄酸乙酯(EMS)诱变籼稻恢复系缙恢10号获得了一个遗传稳定的水稻生育后期卷叶突变体lrl1.lrl1的叶片在前期生长正常,从13叶龄开始,上三叶沿中脉向内卷曲,且随着生育期推进,卷曲度增加,在成熟期剑叶、倒二叶和倒三叶的卷曲度分别为73.66%,66.91%和45.81%.与野生型缙恢10号相比,除lrl1的千粒重(21.43 g)显著降低外,其他重要农艺性状均没有显著差异.lrl1的叶片小维管束间的泡状细胞数量减少、形状怪异、排列极不规则,导致小维管束之间的夹角变小,从而引起了其叶片的卷曲.lrl1的上三叶光合色素含量均显著高于野生型.但其功能叶净光合速率等均与野生型没有显著差异.经遗传分析和分子定位,该叶片卷曲受一对隐性核基因控制,位于第9染色体分子标记SWU-1和Ind6之间812 kb的区域.通过基因预测,在该区域共有129个候选基因,对其中3个可能与卷叶相关的基因测序,均未发现它们在lrl1与野生型间存在差异.以泡状细胞变化相关的6个卷叶基因在突变体lrl1中的real-time PCR分析表明,卷叶基因ROC5和RL14的表达明显上调,而ACL1,SRL1以及NAL7被下调,暗示了这些基因可能在同一通路上调控叶片的发育.该基因是一个新发现的基因,而且遗传行为简单,其相应突变体含有许多育种有利的性状,因而研究结果为该基因的克隆和功能研究及高产育种奠定了良好基础.  相似文献   

16.
一个水稻突变体呈现叶片无中脉、内稃比外稃长、内外稃不闭合和雌芯同源异型转化为雄蕊或雄蕊/雌蕊中间器官等突变表型。用该突变体作父本,02428,N625,中丹2号和CDR22为母本配制杂交组合进行性状遗传分析,根据F2代植侏的表型及χ^2测验结果证明突变性状是由单陷性基因控制的。选用突变体为父本,N625为母本杂交的F2群体作定位群体,利用SSLP标记和RFLP标记将与突变性状相关的基因定位在第3染色体短臂上2个相近的分子标记之间,暂称为dl(t)。  相似文献   

17.
杨晖  孟祥雪  于黎  靳伟  张鑫  张亚平 《科学通报》2010,55(10):849-856
生物对外界环境中化学物质信号的识别和感知对其生存有着极其重要的意义. 大多数哺乳动物具有两条嗅觉通路, 主要嗅觉系统(MOS)用来感受普通嗅觉信号, 而犁鼻器系统(VNS)则从异常灵敏的程度来识别小范围内特异性的化学感应信号-信息素(pheromone). 信息素是一类在同种内个体间传递的物质, 可引发群体内与个体交流和生殖相关的一系列生理和行为变化. 本文综述了对哺乳动物犁鼻器信息素感知及犁鼻器系统特异(VNS-specific)基因的分子进化研究进展, 这些基因包括信息素受体家族V1R和V2R以及离子通道TRPC2, 为进一步深入研究哺乳动物信息素感知的分子机制奠定基础.  相似文献   

18.
植物叶片是最主要的光合作用器官. 作物叶片生长、发育和衰老的分子机理研究与提高作物产量形成密切相关. 利用水稻中花11号经Co60辐射产生的早衰叶突变体分别与南京6号和南京11号杂交的F1及其衍生的F2群体, 对早衰叶突变体进行了遗传分析和基因定位. 结果表明, 该早衰叶突变体是由一隐性核基因psl1控制, 利用SSR标记把psl1定位在水稻第2染色体上. 利用已经公布的水稻基因组序列, 在该基因附近区域发展了34对新的STS标记, 对psl1进行了精细定位. 以此为基础, 构建了覆盖psl1区域的BAC重叠群, 并把目标基因定位在一个约48 kb 的区段上, 为最终克隆目标基因奠定了基础.  相似文献   

19.
水稻穗部是影响产量的重要农艺性状,其发育健全与否直接决定了水稻产量的高低.过去几十年已经有大量的粒型和穗粒数相关基因被克隆报道,但调控穗顶发育相关基因的克隆与功能的报道较少.本研究通过甲基磺酸乙酯(EMS)诱变籼稻品种宜香1B,筛选到一个能稳定遗传的穗顶退化突变体材料paa1331(panicleapical abortion1331).与野生型相比,该突变体主要表现为穗顶端严重退化(退化率高达53%),株高变矮,分蘖减少,穗粒数降低.台盼蓝染色结果表明,穗顶端退化伴随细胞程序性死亡;激素测定结果证明,突变体穗顶部生长素含量高于野生型.遗传分析表明,该突变性状受隐性单基因控制;通过图位克隆与重测序分析发现,基因LOC_Os04g40720第4外显子的碱基A突变成G,导致编码的氨基酸由天冬酰胺变为天冬氨酸.目前该基因未见报道,暂将该基因定为候选基因.  相似文献   

20.
张琼宇  郑康  马珊珊  童英  罗琛 《科学通报》2009,54(22):3455-3463
β-catenin基因是脊椎动物背部中轴结构形成的必需基因. 近年的研究发现, 在斑马鱼和爪蟾中, β-catenin还具有抑制神经外胚层形成的作用. 为深入了解β-catenin是如何抑制神经外胚层形成以及这种抑制在正常发育过程中的功能, 我们研究了金鱼胚胎发育过程中β-catenin对神经外胚层发育早期调节基因vsx1表达的抑制作用. 实验结果表明, 用反义morpholino oligonuc- leotides (MO)抑制内源β-catenin的功能可导致胚胎发育早期vsx1的广泛表达; β-catenin可抑制vsx1基因启动子所控制的绿色荧光蛋白(GFP)报告基因的表达. 进一步的分析证明, β-catenin所直接启动的下游靶基因boz可以通过vsx1基因启动子中的特定结合位点抑制vsx1基因启动子所控制的GFP报告基因的表达. 这些结果表明, β-catenin在脊索中胚层前体细胞中启动与脊索中胚层发育调节相关基因表达的同时, 还能以细胞自主性方式抑制神经发育早期调节基因vsx1在这些细胞中表达, 提示β-catenin在脊索中胚层前体细胞中抑制vsx1基因的异位表达与启动脊索中胚层调节基因的表达都是保障脊索正常发育所必需的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号