首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species produced by NADPH oxidase regulate plant cell growth   总被引:70,自引:0,他引:70  
Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.  相似文献   

2.
DeCoursey TE  Morgan D  Cherny VV 《Nature》2003,422(6931):531-534
The enzyme NADPH oxidase in phagocytes is important in the body's defence against microbes: it produces superoxide anions (O2-, precursors to bactericidal reactive oxygen species). Electrons move from intracellular NADPH, across a chain comprising FAD (flavin adenine dinucleotide) and two haems, to reduce extracellular O2 to O2-. NADPH oxidase is electrogenic, generating electron current (I(e)) that is measurable under voltage-clamp conditions. Here we report the complete current-voltage relationship of NADPH oxidase, the first such measurement of a plasma membrane electron transporter. We find that I(e) is voltage-independent from -100 mV to >0 mV, but is steeply inhibited by further depolarization, and is abolished at about +190 mV. It was proposed that H+ efflux mediated by voltage-gated proton channels compensates I(e), because Zn2+ and Cd2+ inhibit both H+ currents and O2- production. Here we show that COS-7 cells transfected with four NADPH oxidase components, but lacking H+ channels, produce O2- in the presence of Zn2+ concentrations that inhibit O2- production in neutrophils and eosinophils. Zn2+ does not inhibit NADPH oxidase directly, but through effects on H+ channels. H+ channels optimize NADPH oxidase function by preventing membrane depolarization to inhibitory voltages.  相似文献   

3.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from super-oxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coin- cided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pro- nouncedly inhibited by two NADPH oxidase inhibitors, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of H2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in sus-pension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

4.
S-nitrosylation of NADPH oxidase regulates cell death in plant immunity   总被引:2,自引:0,他引:2  
Yun BW  Feechan A  Yin M  Saidi NB  Le Bihan T  Yu M  Moore JW  Kang JG  Kwon E  Spoel SH  Pallas JA  Loake GJ 《Nature》2011,478(7368):264-268
Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.  相似文献   

5.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from superoxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coincided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pronouncedly inhibited by two NADPH oxidase inhibitor, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of 2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in suspension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

6.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from superoxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coincided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pronouncedly inhibited by two NADPH oxidase inhibitor, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of 2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in suspension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

7.
8.
Cell transformation by the superoxide-generating oxidase Mox1.   总被引:65,自引:0,他引:65  
Reactive oxygen species (ROS) generated in some non-phagocytic cells are implicated in mitogenic signalling and cancer. Many cancer cells show increased production of ROS, and normal cells exposed to hydrogen peroxide or superoxide show increased proliferation and express growth-related genes. ROS are generated in response to growth factors, and may affect cell growth, for example in vascular smooth-muscle cells. Increased ROS in Ras-transformed fibroblasts correlates with increased mitogenic rate. Here we describe the cloning of mox1, which encodes a homologue of the catalytic subunit of the superoxide-generating NADPH oxidase of phagocytes, gp91phox. mox1 messenger RNA is expressed in colon, prostate, uterus and vascular smooth muscle, but not in peripheral blood leukocytes. In smooth-muscle cells, platelet-derived growth factor induces mox1 mRNA production, while antisense mox1 mRNA decreases superoxide generation and serum-stimulated growth. Overexpression of mox1 in NIH3T3 cells increases superoxide generation and cell growth. Cells expressing mox1 have a transformed appearance, show anchorage-independent growth and produce tumours in athymic mice. These data link ROS production by Mox1 to growth control in non-phagocytic cells.  相似文献   

9.
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.  相似文献   

10.
Taxol (paclitaxel, NSC-125973), a secondary me- tabolite of the Taxus species, has been recognized as one of the best anticancer drugs emerging in the last decade[1]. The production of Taxol by various Taxus spp. cells in culture has been one of the most …  相似文献   

11.
在植物细胞中,线粒体ETC的复合物I和III是ROS产生的主要部位。大量证据表明,ROS可作为一普遍存在的信号分子在胁迫诱导植物PCD过程中起作用,而线粒体处于PCD调控的中心位置。  相似文献   

12.
Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process.  相似文献   

13.
Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1   总被引:69,自引:0,他引:69  
A Abo  E Pick  A Hall  N Totty  C G Teahan  A W Segal 《Nature》1991,353(6345):668-670
Professional phagocytes, such as neutrophils and monocytes, have an NADPH oxidase that generates superoxide and other reduced oxygen species important in killing microorganisms. Several components of the oxidase complex have been identified as targets of genetic defects causing chronic granulomatous disease. The complex consists of an electron transport chain that has as its substrate cytosolic NADPH and which discharges superoxide into the cavity of the intracellular phagocytic vacuole. The only electron transport component identified so far is a low-potential cytochrome b, apparently the only membrane component required. At least three cytosolic factors are also necessary, two of which, p67phOx and p47phOx, have been identified by their absence in patients with chronic granulomatous disease. A third component, sigma 1, is required for stimulation of oxidase activity in a cell-free system. The active components of purified sigma 1 are two proteins that associate as heterodimers, and here we report that these are the small GTP-binding protein p21rac1 and the GDP-dissociation inhibitor rhoGDI.  相似文献   

14.
氧与活性氧     
讨论了活性氧的产生与化学活性.氧及活性氧会对机体造成伤害,活性氧中极其有害的是.OH、HO·2和O12Δg等.但生物进化赋予有机活体一系列清除活性氧、免受其害的机制,如化学抗氧化系统、酶抗氧化系统、损伤修复功能、细胞免疫系统、细胞色素防御系统等.正是机体内活性氧的产生与清除速率间的平衡,活性氧引起的损伤与修复速率之间的平衡使活体得以维持生机.对人们关于一些疾病与活性氧关系的认识作了扼要介绍.  相似文献   

15.
椒样薄荷幼苗在含有0.5%(w/v) NaCl的Hoagland营养液中生长72 h后,不定根的伸长量约为对照组一半。分别向含有0.5%(w/v) NaCl的营养液中,加入不同浓度(50、100、200、300 μmol/L)的SNP,用于培养椒样薄荷幼苗,72 h后观测根系生长状况。当SNP浓度为100 μmol/L时,不定根的伸长量、根毛密度、根毛总长度与未添加SNP的对照组相比均有明显增加。通过组织染色观察到,NO能够缓解NaCl对根尖顶端分生组织的脂质过氧化作用及对质膜完整性的损伤,并正向调节内源ROS水平。  相似文献   

16.
SO_2诱导拟南芥保卫细胞凋亡   总被引:2,自引:0,他引:2  
以拟南芥叶片下表皮为材料,研究了SO_2体内衍生物-亚硫酸钠和亚硫酸氢钠混合液(3:1,mmol·L~(-1)/mmol·L~(-1))对气孔保卫细胞的致死效应.结果表明,浓度1.0~5.0 mmol·L~(-1)的SO_2衍生物处理表皮3 h可引起保卫细胞死亡,死细胞出现核固缩、核断裂、凋亡小体等典型的核凋亡特征,且胁迫组细胞内活性氧和钙离子水平升高.蛋白酶抑制剂Z-Asp-CH_2-DCB和TLCK能减少SO_2衍生物诱导的细胞凋亡;过氧化氢酶(CAT)、抗坏血酸(AsA),及Ca~(2+)螯合剂乙二醇双四乙酸(EGTA)和Ca~(2+)通道抑制剂LaCl_3均可使SO_2衍生物诱发的细胞死亡率降低.0.1 mmol·L~(-1)的AsA或EGTA能降低胁迫组胞内的活性氧和Ca~(2+)水平,与死亡率降低相伴发生.以上结果表明,一定浓度的SO_2可诱导拟南芥保卫细胞凋亡,胁迫可能通过诱导活性氧产生、胞外钙内流,造成胞内Ca~(2+)浓度升高,引发细胞程序性死亡.  相似文献   

17.
Bochkov VN  Kadl A  Huber J  Gruber F  Binder BR  Leitinger N 《Nature》2002,419(6902):77-81
Lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, interacts with LPS-binding protein and CD14, which present LPS to toll-like receptor 4 (refs 1, 2), which activates inflammatory gene expression through nuclear factor kappa B (NF kappa B) and mitogen-activated protein-kinase signalling. Antibacterial defence involves activation of neutrophils that generate reactive oxygen species capable of killing bacteria; therefore host lipid peroxidation occurs, initiated by enzymes such as NADPH oxidase and myeloperoxidase. Oxidized phospholipids are pro-inflammatory agonists promoting chronic inflammation in atherosclerosis; however, recent data suggest that they can inhibit expression of inflammatory adhesion molecules. Here we show that oxidized phospholipids inhibit LPS-induced but not tumour-necrosis factor-alpha-induced or interleukin-1 beta-induced NF kappa B-mediated upregulation of inflammatory genes, by blocking the interaction of LPS with LPS-binding protein and CD14. Moreover, in LPS-injected mice, oxidized phospholipids inhibited inflammation and protected mice from lethal endotoxin shock. Thus, in severe Gram-negative bacterial infection, endogenously formed oxidized phospholipids may function as a negative feedback to blunt innate immune responses. Furthermore, identified chemical structures capable of inhibiting the effects of endotoxins such as LPS could be used for the development of new drugs for treatment of sepsis.  相似文献   

18.
Active oxygen species (AOS) generated in response to stimuli and during development can function as signalling molecules in eukaryotes, leading to specific downstream responses. In plants these include such diverse processes as coping with stress (for example pathogen attack, wounding and oxygen deprivation), abscisic-acid-induced guard-cell closure, and cellular development (for example root hair growth). Despite the importance of signalling via AOS in eukaryotes, little is known about the protein components operating downstream of AOS that mediate any of these processes. Here we show that expression of an Arabidopsis thaliana gene (OXI1) encoding a serine/threonine kinase is induced in response to a wide range of H2O2-generating stimuli. OXI1 kinase activity is itself also induced by H2O2 in vivo. OXI1 is required for full activation of the mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 after treatment with AOS or elicitor and is necessary for at least two very different AOS-mediated processes: basal resistance to Peronospora parasitica infection, and root hair growth. Thus, OXI1 is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses.  相似文献   

19.
为了阐明虾青素的抗氧化作用与细胞凋亡的关系,探究虾青素预处理对H_2O_2诱导HeLa细胞氧化应激的影响.通过CCK-8、活性氧探针染色、流式细胞术、蛋白质免疫印迹、实时荧光定量pcr等,分别检测细胞存活率和活性氧的积累、细胞凋亡、蛋白含量、基因相对表达量改变.结果表明虾青素预处理组细胞活力较对照组提高了29.54%以上且其可以将H_2O_2诱导的活性氧降低至对照水平,同时提高Nrf2蛋白表达量3倍之多,过氧化氢酶基因相对表达量1.5倍.说明虾青素可以有效缓解H_2O_2诱导的HeLa细胞氧化应激,从而抑制细胞凋亡.  相似文献   

20.
应用四甲基偶氮唑盐(MTT)法检测洋地黄毒苷对NCI-H446细胞增殖的抑制效果;用AO-EB染色、DNA凝胶电泳分析以及AnnexinⅤ检测法检测细胞凋亡;用碘化丙啶(PI)染色测定其周期变化,利用激光共聚焦显微镜观察细胞内活性氧(ROS)和钙离子(Ca2+)的变化.结果显示洋地黄毒苷明显抑制NCI-H446细胞增殖,AO-EB染色、DNA电泳及AnnexinV检测法显示细胞有明显的凋亡现象,PI染色显示处于S期的细胞增多,激光共聚焦显微镜观察表明细胞内活性氧和钙离子浓度均升高.表明洋地黄毒苷能明显抑制NCI-H446细胞增殖,且细胞被阻滞在S期.细胞内活性氧和钙离子浓度的增加可能与其诱导细胞凋亡有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号