首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
本文给出谱位于 Jordan 曲线上的一类闭算子是可分解算子的充分条件.设 C 和 C_∞分别表示复平面和扩充复平面.和分别表示 C_∞的闭子集族和 C 的紧子集族.X 表示复 Banach 空间.(X)和(X)分别表示 X 上的闭线性算子族和有界线性算子族.(T)表示算子 T 的定义域.ρ(T)和σ(T)分别表示 T 的预解集和  相似文献   

2.
本文讨论 Banach 空间上的闭可约化算子,闭谱算子及闭可分解算子的谱特征,并给出了 Banach 空间上的闭算子成为闭谱算子的充要条件。设 X 是复 Banach 空间,C(x)表示 X 中的闭线性算子全体,C_∞表示扩充复平面。定义1 T∈C(X)称为完全谱可约化算子,如果对 C_∞的每个开子集或闭子集ι及相应的谱子空间(?),存在 T 的不变子空间 M,使得  相似文献   

3.
设X是复Banach空间,C(X)为X上封闭线性算子族,表示封闭复平面C_∞之闭子集族。对T∈C(X),以D(T)我示T之定义域。若X之闭子空间Y使得T[Y∩D(T)]Y。则称Y是T之不变子空间,T之不变子空间Y称为谱极大空间,若对T之另一不变子空间Z,从σ(T|Z)σ(T|Y)可推得ZY。设Y是T之不变子空间,T在Y上的限制算子记作T|Y或T_Y,X关于Y的商空间记作X~Y或X,T在商空间X上诱导的商算子记作T~Y或简记为T。其中  相似文献   

4.
本文给出 Banach 空间上闭线性算子的部局谱映射定理以及与其有关的几个结果。我们以 C_(?)表示扩充复平面,X 表示复 Banach 空间,丁表示 X 上以(?)(T)为定义域的闭线性算子,将 T 的预解集ρ(T)和谱σ(T)均视为 C_x 的子集,并且假定ρ(T)非空.当 T 有单值扩张性时,对每个 x∈X,定义 T 关于 x 的局部预解集为  相似文献   

5.
本文中用C表示复平面,C_∞表示扩充的复平面,C(X)为复 Banach 空间X上闭算子的全体。若T∈C(X),我们用D_T记T的定义域,ρ(T),σ(T),ρ_e(T)分别为T的予解集、谱和扩充谱。σ(x,T)是T在x处的局部谱。我们还定义T在x处的扩充局部谱σ_e(x,T)如下设Y为X的闭子空间,如有T(Y∩D_T)Y,则称Y是T的不变子空间记作Y∈I_(nv)(T)。T\Y和T~Y分别表示T在Y上限制及在X/Y上的诱导商算子,设Y∈I_(nv)(T),如果对任何Z∈I_(nv)(T),恒可经σ_(?)(T\Z)(?)σ_e(T\Y)推得ZY,则称Y为T的(e)极大谱  相似文献   

6.
令X表示复Banach空间,B(X)为X上的有界线性算子的Banach代数,C(X)为定义在X中的闭算子全体_∞表示扩充的复平面_∞=∪{∞}。设T∈C(Z),其定义域记为D(T),e(T)表示T的豫解集:λ∈ρ(T)(λI-T)~(-1)∈B(X),σ(T)=\ρ(T)与σ_∞(T)=_∞\ρ(T)分别为T的谱与扩充谱。总假定ρ(T)≠φ且∞ρ(T)。(T)表示在σ_∞(T)的某领域上解析上的函数所构成的集合。对于给定的α∈ρ(T),记  相似文献   

7.
研究了局部凸空间上对偶算子和偏微分算子的谱结构.主要结果有:定理1 若 X 是完备的桶空间,则 T∈L(X)与T′∈L(X′_β)具有相同的谱和奇谱.定理2 设 P(D)是速降函数空间(R~n)上的常系数偏微分算子,则 P(D)的剩余谱为 P(R~n),谱为 P(R~n)在 C 的单点紧化 C_∞中的闭包■,奇谱为■\P(R~n),点谱和连续谱均为空集.当n=1时,P(D)的值域是有限余维的闭子空间.定理4 设 P(D)是带强拓扑的缓增分布空间(R~n)上的常系数偏微分算子,则 P(D)的谱为■,点谱为 P(R~n),奇谱为■\(R~n),连续谱和剩余谱均为空集.  相似文献   

8.
在本短文中,将给出某些算子成为正常算子的条件.特别,将文[1]中如下命题“设T是复Hilbert空间中θ-类算子,如果T~2是正常算子,那末T必是正常算子”推广成θ-类算子T,如果p(T)是正常算子(其中p(·)是非常数多项式),那末T必是正常算子(详见本文定理4). 本文,H表示复Hilbert空间,B(H)表示H上线性有界算子全体,σ(A),p(A)分别表示算子A的谱集和正则集,(?)(A),(?)(A)分别表示算子A的零空间、值空间.m(·)表示Lebesqne测度.  相似文献   

9.
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体。若σ(T)\σ_w(T)=π00(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σ_w(T)分别表示算子T的谱和Weyl谱,π00(T)表示谱集中孤立的有限重特征值的全体。首先给出了Hilbert空间上有界线性算子WeylKato分解的定义,并由Weyl-Kato分解的性质定义了一种新的谱集,利用该谱集刻画了算子函数演算满足Weyl定理的充要条件。  相似文献   

10.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

11.
本文讨论在Banach 空间X 上的闭算子T 和由函数演算所确定的算子f(T)之间的关系.得到下列主要结果:(1) 若f∈(?)_(1/m)(T),且T 是超可分解的,则f(T)也是超可分解的.其中(?)_(1/m)表示在σ(T)的某邻域内解析,且在“∞”处有m 级极点的复值函数.(2) 若f∈(?)_∞(T),且T 是超可分解的,则f(T)也是超可分解的.其中(?)_∞(T)表示在σ(T)∪{∞}的某邻域内解析的复值函数全体.  相似文献   

12.
文[1]~[4]研究了一类非正常算子——(?)类算子.在本文中,我们给出了另一类算子的定义并讨论之.这类算子的某些性质与类算子十分类似,但另一些性质又不尽相同. 在本文中,(?),(?),……表示可分的复Hilbert空间,(?)表示(?)上线性有界算子全体.p(T),σ(T),σ_(?)(T),σ_p(T),γ(T)分别表示T的正则集、谱、近似点谱、点谱和谱半径.(?)(T),(?)(T)分别表示T的值域和核,[T~*,T]表示T的换位子T~*T-TT~*.  相似文献   

13.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

14.
I.Erdelyi 和 R.Lange 在(1)中证明了:如果(B)空间中有界算子T 弱可分解且具有分离谱,则存在 T 的弱谱容度 E 使得 SuppE=σ(T).本文指出:对(B)空间中有界算子 T 的任一弱谱容度,上述结论亦成立,并且对(B)空间中具有强谱度的闭算子,其结论仍然成立。而且证明了:(B)空间中具有强谱容度的闭线性算子为有界可分解算子的充要条件是σ(T)有界.  相似文献   

15.
设C是复数域, H是C上无穷维可分的 Hibert 空间,B(H)及K(H) 分别表示H上有界线性算子和紧算子的全体.若T∈B(H),记σ(T),σa(T),σea(T)及σja(T) 分别表示T的谱, 近似点谱,本质近似点谱及联合近似点谱[1,2].  相似文献   

16.
本文讨论Banach空间上有界强可分解算子的对偶性质,并给出相关的几个结果。设X是复Banach空间,(?)(X)是X上的有界线性算子全体所成的Banach代数,对T∈(?)(X),T~*表示T的对偶算子,对T的不变子空间Y,T|Y表示T在Y上的限制算子,T~r表示T在商空间X/Y上的诱导的算子。我们以C表示复平面,以F表示复平面的闭子集族。  相似文献   

17.
设H为复的无限维可分Hilbert空间,B(H)为H上有界线性算子的全体.若σ(T)\σw(T)=πoo(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,πroo(T)={λ∈isoσ(T):0dimN(T-λI)∞};当σ(T)\σw(T)∈roo(T)时,称T∈B(H)满足Browder定理.本文利用算子的广义Kato分解性质,刻画了算子在微小紧摄动下单值延拓性质(SVEP)与Weyl型定理之间的关系.  相似文献   

18.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.T∈B(H)称为满足(R1)性质,若σa(T)\σab(T)?π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和本质逼近点谱,π00(T)={λ∈isoσ(T):0相似文献   

19.
设A∈B(ye),B∈B(k),C∈(B)((k),(ye))给定,对X∈B((ye),(k))定义Mx=(AXCB)ye( )k→ye( )(k).在一定条件下刻画集合∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx),其中σl(T)和σr(T)分别表示算子T的左谱和右谱.利用了算子矩阵的分块技巧和算子分块的几何结构.在C是闭值域的条件下,完全刻画了∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx).此刻画在缺项算子矩阵的谱的研究中是新的结果,应用该刻画可以得到若干已知结论.  相似文献   

20.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号