首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
制备高分散的负载型催化剂是充分利用在自然界中储量极为有限的贵金属资源的重要手段.采用不同方法制备一系列负载Pd催化剂,考察了不同载体负载Pd催化剂的CO氧化性能.发现以乙酰丙酮钯为前驱体制得的Pd/TiO2催化剂活性远高于Pd/SiO2和Pd/Al2O3催化剂的活性,在室温下就表现出较好的CO氧化活性,且在无气相O2条件下CO可以与Pd/TiO2催化剂表面的氧物种(晶格氧)反应生成一定量的CO2.分散度测试、CO吸附的原位红外光谱和程序升温还原的结果表明Pd/TiO2催化剂上Pd物种以高分散Pd0形式存在,并与载体之间存在强相互作用,这可能是Pd/TiO2催化剂具有低温活性的主要原因.  相似文献   

2.
运用基于密度泛函理论的第一性原理计算研究单个CO分子与含有氧空穴的二氧化铈的(110)及(111)表面晶格氧的反应,深入探讨了氧空穴对CeO_2(110)及(111)表面晶格氧催化氧化CO活性的影响,提出了CO分子在二氧化铈表面存在缺陷时与晶格氧的反应机理。通过计算CO分子在缺陷CeO_2(110)与(111)表面吸附的吸附能发现,CO分子在缺陷二氧化铈(110)与(111)的吸附与干净表面的结果大致相同,但是与CO分子在干净二氧化铈(110)表面反应的能垒相比,一部分的氧原子由于氧空穴的存在,与CO反应的能垒降低,对CO反应的活性增强;在缺陷CeO_2(111)表面,晶格氧与CO的反应能力也有所增强。CO与缺陷CeO_2(110)与(111)表面的晶格氧原子反应后,会生成一个较稳定吸附CO2物种的中间态,该物种的继续反应途径有两种:(1)与其他晶格氧反应生成碳酸盐;(2)直接脱附变为气相的CO_2分子。通过比较反应能垒发现,CO在缺陷CeO_2的(110)及(111)表面生成碳酸盐比其在干净表面生成碳酸盐的难度增加。另外形成中间态CO_2后,由于周围氧原子的缺少,缺陷CeO_2(110)与(111)表面上的中间态脱附形成气相CO_2分子的趋势也比相应的干净表面上要强。综上可以得出,当氧空穴存在时,二氧化铈表面晶格氧与CO的反应更容易,但生成碳酸盐更难。同时计算结果也表明,稀土元素特有的局域化的Ce的4f轨道/电子在通过抑制局域电子的进一步发生来调控表面反应的难易程度中仍然发挥了关键作用。  相似文献   

3.
基于周期性密度泛函理论,研究了N2O和CO2气体在N/Fe共掺杂锐钛矿TiO2(101)面最稳定结构的吸附,并与其在洁净TiO2(101)面的结果进行了对比.详细比较了三原子气体不同吸附位、不同吸附端在Fe位及N位吸附的吸附能、键长和键角的变化.结果表明:N2O在Fe位吸附较清洁表面强,为化学吸附;CO2在改性表面的吸附较清洁表面弱.  相似文献   

4.
应用XRD分析了催化剂的体相结构,用红外光谱研究了CO和NO在CuO-La_2O_3/γ-Al_2O_3催化剂上的吸附,并对表面铜的价态进行了表征。氧化态样品的体相存在CuO、CuAl_2O_4,可能还有CuLa_2O_4物相,表面铜以 2价的形式存在。还原态样品的体相存在Cu~0、CuLa_2O_4,可能还有CuAlO_2,表面存在Cu~0、Ca~ 和少量的Cu~(2 )。CO容易在Cu~.、Cu_2O及CuAlO_2上形成分子态吸附;同时还存在HCO_3~-、CO_3~(2-)物种。NO容易吸附在CuO、CuAl_2O_4和CuLa_2O_4上,在Cu~0上可能解离吸附,还产生NO_3~-吸附物种。氧化态样品上,150℃以上,CO使Cu~(2 )还原为Cu~ 。还原态样品上,NO和CO交替吸附和共吸附实验证明低温出现了NO/Cu~(2 )和CO/Cu~ 的选择吸附现象。  相似文献   

5.
采用基于密度泛函理论(density functional theory,DFT)的第一性原理方法,对H和B原子在有序态Ni3Fe合金(111)表面的吸附进行研究.结果表明,B原子在有序态Ni3Fe合金(111)表面的吸附能远低于H原子,从而更容易被有序态Ni3Fe合金(111)表面吸附,形成稳定结构.这导致H原子在有序态Ni3Fe合金表面的吸附机会大大减少,降低了有序态Ni3Fe合金在氢气中的环境氢脆.进一步的电子结构分析表明,H原子的表面吸附能高于B原子是由于H原子在有序态Ni3Fe合金(111)表面吸附时,H原子的反键态被推到了费米面以上所引起的.  相似文献   

6.
建立了GaN(0001)2×2表面吸附模型,采用基于DFT动力学赝势方法,对TiO2分子的吸附进行了理论计算.研究了TiO2分子在GaN(0001)表面的吸附成键过程、成键方位及表面化学键特性.计算结果表明吸附过程经历了物理吸附、化学吸附与稳定态形成的过程,化学结合能达到7.184~7.423 eV.不同初始位置的TiO2分子吸附后,Ti在fcc或hcp位置,两个O原子分别与表面两个Ga原子成键,Ga—O化学键表现出共价键特征,O—O连线与GaN[11-20]方向平行,与实验观测(100)[001]TiO2//(0001)[11-20]GaN一致.  相似文献   

7.
用密度泛函DFT方法对NiCO,Ni2CO(A)和Ni2CO(B)单配位络合物进行量子化学的计算.对CO在Ni金属催化剂上可能的吸附模式以及C≡O叁键活化的微观机理进行分析.发现CO在镍上有两种吸附方式:立式顶位吸附和卧式吸附;CO的活化程度与吸附方式密切相关,卧式吸附有利于CO活化.  相似文献   

8.
本文研究了CO、H_2S和C_4H_4S在Ni/γ-Al_2O_3上的化学吸附过程。实验证明,用CO在-72℃的化学吸附测定催化剂的金属表面积,是一个可行的方法。CO不吸附在被毒物掩盖的表面上。S复盖度在0.4以下,毒物S对CO在未复盖的镍表面上的吸附没有影响;复盖度超过0.4.随着复盖度增加,S明显地阻碍CO的吸附。10Vpm~(?)H_2S在H_2中的混合气体,在300—500℃下,经过约20小时的化学吸附,形成饱和吸附层,S与表面Ni原子比例为0.53,0.1%(V/V)C_4H_4S在H_2中的混合气体,在20℃经过约20小时的吸附,形成饱和吸附层。表面Ni原子与C_4H_4S分子比例为4.95。噻吩以非解离方式占据着4.95个表面Ni中心。中毒催化剂在600℃,H_2气流下经过约50小时,可以完全再生。  相似文献   

9.
五边形石墨烯具有多种优秀的特性,其较大的比表面积和非直接带隙可能有利于气体分子的吸附. 本文利用基于密度泛函理论的第一性原理计算方法,逐步研究了两种常见的气体分子CO2和CO在五边形石墨烯表面的吸附行为. 根据五边形石墨烯的结构特点,以及CO2和CO的分子形态,CO2总共有四种吸附方式,而CO则有六种吸附方式. 通过计算吸附能、电荷转移、吸附距离、能带间隙、电荷密度和态密度、分波态密度等指标,探究这两种气体分子不同方式的吸附情况. 结果显示,气体分子的不同吸附方式对吸附行为有明显的影响. 而且在同种情况下,CO普遍比CO2分子有更好地吸附效果. 但由于气体分子与基底之间未能形成化学键,CO2和CO在五边形石墨烯表面的吸附是比较弱的物理吸附.  相似文献   

10.
采用基于密度泛函理论的平面波超软赝势方法PBE+U,研究了三类(N,Fe)共掺杂锐钛矿相TiO2(100)表面的稳定性及CO在最优掺杂表面的吸附,计算了最优表面不同掺杂位的结合能、吸附能、成键和电子结构.结果表明:CO在清洁TiO2(100)面及(N,Fe)非近邻掺杂表面的吸附较弱,(N,Fe)近邻共掺杂表面的吸附较强.通过吸附能的比较可知,N位吸附的吸附能最低,吸附最稳定,Fe位次之.由态密度可以看出,吸附方式的变化主要源于(N,Fe)表面近邻共掺杂改变了TiO2(100)面电子结构,使吸附位原子与C原子形成新的化学键.  相似文献   

11.
CO在Pt(111)表面吸附的从头算研究   总被引:1,自引:1,他引:0  
本文在超胞近似和slab模型的基础上,采用广义梯度近似(GGA)下的RPBE(Revised Perdew-Burke-Ernzerhof)泛函对CO-Pt(111)体系进行了理论研究.对体系的吸附能、C-O键和C-Pt键的键长、CO的振动频率以及电子态密度(DOS)进行了计算和分析.结果表明,在0.25ML(mono-layer)的覆盖度下,CO在顶位(top)、桥位(bridge)、两个三重洞位(fcc和hcp)的吸附能非常接近,这说明CO在Pt(111)面比较容易扩散.在顶位,C-O键和C-Pt键的键长分别为1.16和1.85,CO的振动频率为2069cm-1.通过态密度分析表明,CO吸附在桥位和洞位时,其分子轨道3σ、4σ、1π、5σ轨道均参与成键,但是CO吸附在顶位时,仅有4σ、1π、5σ轨道参与成键,这可能与CO吸附在表面时和不同数目的Pt原子结合密切相关.  相似文献   

12.
采用密度泛函理论,在Slab模型下,研究了CO_2在Ni_5Ga_3合金(010)面上的吸附确定了CO_2在Ni_5Ga_3(010)面上的吸附位点、吸附构型和吸附能,并对吸附成因进行了仔细分析.计算结果表明,CO_2在富Ni面上的吸附较贫Ni面上稳定,η~2-CO*结构是CO_2的优势吸附构型.电子结构分析结果显示,CO_2的4σ_g,3σ_u,1π_g,2π_u轨道与表面Ni原子d_(xz)和d_z~2轨道之间的相互作用是CO_2能够稳定吸附于表面的主要因素.  相似文献   

13.
采用X射线光电子能谱对后处理前后的低温碳管(LT-CNTs)进行表面特征分析.发现纯化后碳管的O/C原子比升高,经过Ar气保护下的高温煅烧的后处理后,其O/C原子比降低,比表面积增大.对C1 s峰的拟合分析表明,碳管表面的含氧基团发生改变,深度纯化碳管时,大量活性碳原子变为羟基(C-O),大量的羰基(C=O)变为羧基(O-C=O).同时,大部分化学吸附的氧气将解吸,氧气的解吸将使C-O键或O-C=O转变为C=O双键等形式,且伴随碳管电学性质的改变,由明显的金属性转变为半导体性.  相似文献   

14.
用B3LYP/6—31G*研究了不同烷基链阴离子表面活性剂的键长、键角和净电荷等随着碳原子数的增加而呈现的变化规律,考察了表面活性剂的结构与表面张力的关系。结果表明:(1)C—O键长和(YS-O平均键角与碳原子数有关;(2)端基净电荷和极性头净电荷随着碳原子增加而增加。  相似文献   

15.
应用嵌入原子模型(EAM)研究了氢在Ni(410)面的吸附和解离.首先计算单个氢原子在Ni(410)面上的吸附能Ead,吸附键长RH-Ni及吸附高度H0,发现氢在Ni(410)面上有3种相对稳定的吸附位:台面上的赝式四重洞位H1和H2位、台阶底部棱上的LB位和台阶一边棱位B.与低指数面Ni(001)相比,明显增加了台阶棱上的B位以及台阶底部棱上的LB位,相应洞位的吸附性也有增强.说明氢在Ni(410)表面的吸附性受到台阶的影响,从而台阶附近的吸附位增多且吸附性增强;然后计算了H2在Ni(410)表面解离吸附时的活化势垒Ea、吸附能Qad,氢-镍之间键长RH-Ni,构建了解离吸附等势面,计算结果表明台阶处是氢吸附和解离的活跃部位.  相似文献   

16.
为了揭示掺杂对Al(111)面O2吸附性能影响规律。采用基于密度泛函理论(Density Functional Theory, DFT)的第一性原理计算方法,通过构建模型以及设置计算参数,计算得到了不同O原子覆盖度下Ni、Mn、Si掺杂对应Al(111)面吸附O2的吸附能、功函、Bader电荷、差分电荷密度、以及态密度。研究表明:当氧原子覆盖度较低情况下,纯铝表面吸附能绝对值最大,转移电子数最多,原子之间存在相互作用并主要由最外层电子轨道决定。当氧原子覆盖度增大至3/8时,掺杂表面吸附能大于纯铝表面,掺杂促进了Al(111)面吸附氧分子。结果表明:Al(111)面吸附氧分子的能力不仅与掺杂元素有关,还与各表面O原子的覆盖度有关,当O原子覆盖度较低时,Mn、Si、Ni掺杂抑制了O2吸附,当覆盖度较高时,Ni、Mn、Si掺杂促进了O2吸附。  相似文献   

17.
煤气中的有机含硫化合物CS2和COS对环境及后续的反应带来很大的危害,常用Al2O3进行脱硫处理。小分子在固体表面的吸附是研究气固反应的基础。采用量子化学密度泛函理论方法研究了CS2和COS在y-Al2O3(110)表面的吸附,结果表明CS2最稳定的构型为C82的3个原子分别与表面的Al0一Al键中的3个原子作用,形成了(COS2)。一物种,此构型的吸附能为107.98kJ/mol;COS以SC键-9表面的1个Al-O键作用时最稳定,吸附能为99.99kJ/mol。通过分波态密度和小分子吸附前后净电荷的变化可知,在这两个构型中,小分子与表面有很强的相互作用。  相似文献   

18.
CdS / TiO2复合半导体的表面态及光催化性能   总被引:9,自引:0,他引:9  
采用浸渍法制备了CdS/TiO2复合半导体光催化剂.使用XPS和UV-Vis扩散—反射谱对样品的表面组成及光吸收特性进行了分析.结果表明,样品中的硫主要以CdS形式存在,其外层包裹了一层CdSO4;由于在TiO4表面修饰了CdS,使样品的吸收带边由400nm(3.1eV)红移至530nm(2.3eV).采用粉末电导装置对CdS/TiO2薄膜的表面态能级进行了测试,并以活性艳红X-3B水溶液的光催化脱色为指标反应,对CdS/TiO2的活性进行了评价.与单一TiO2相比,CdS/TiO2的表面态更靠近TiO2的导带,有利于电子在表面的捕获,从而提高了样品中自由电荷的浓度,加速了活性艳红X-3B水溶液的光催化脱色反应。  相似文献   

19.
通过计算机编程建立水吸附Al和Cu的模型,利用实空间的Recussion方法分别计算了Al和Cu被H2O吸附前后系统的状态密度和能量变化,及表面金属原子与其近邻原子间的键级积分,并将两个计算结果进行比较.从结果中分析,金属原子的电子转移到H2O分子的O原子上.水吸附金属表面后,状态密度有所下降,次表面原子几乎不受影响,系统总能降低,系统变稳定.H2O使金属表面化学活性降低,并从键级积分计算结果中讨论了Al和Cu钝化膜的形成机理:水通过氧与金属表面原子成键后,表面金属原子与次表面原子作用增强,水中氧和氢原子相互作用改变的不同导致形成不同的钝化膜.  相似文献   

20.
采用DFT方法对CO吸附在PtRu(100)表面的吸附行为进行系统性的研究,分析了键参数及电子结构.结果表明Ru的加入确实能削弱CO在合金上的吸附并且活化CO分子.当Ru的含量达50%时,PtRu催化剂抗CO中毒能力最强.另外CO分子在合金表面的吸附还和其吸附位及表面原子排布有关,CO吸附在Pt上较吸附于Ru上更强,吸附位周围分布Ru较分布Pt更促进CO分子的活化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号