首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interface between silicon and a high-k oxide   总被引:1,自引:0,他引:1  
Först CJ  Ashman CR  Schwarz K  Blöchl PE 《Nature》2004,427(6969):53-56
The ability of the semiconductor industry to continue scaling microelectronic devices to ever smaller dimensions (a trend known as Moore's Law) is limited by quantum mechanical effects: as the thickness of conventional silicon dioxide (SiO(2)) gate insulators is reduced to just a few atomic layers, electrons can tunnel directly through the films. Continued device scaling will therefore probably require the replacement of the insulator with high-dielectric-constant (high-k) oxides, to increase its thickness, thus preventing tunnelling currents while retaining the electronic properties of an ultrathin SiO(2) film. Ultimately, such insulators will require an atomically defined interface with silicon without an interfacial SiO(2) layer for optimal performance. Following the first reports of epitaxial growth of AO and ABO(3) compounds on silicon, the formation of an atomically abrupt crystalline interface between strontium titanate and silicon was demonstrated. However, the atomic structure proposed for this interface is questionable because it requires silicon atoms that have coordinations rarely found elsewhere in nature. Here we describe first-principles calculations of the formation of the interface between silicon and strontium titanate and its atomic structure. Our study shows that atomic control of the interfacial structure by altering the chemical environment can dramatically improve the electronic properties of the interface to meet technological requirements. The interface structure and its chemistry may provide guidance for the selection process of other high-k gate oxides and for controlling their growth.  相似文献   

2.
Oxide surfaces are important for applications in catalysis and thin film growth. An important frontier in solid-state inorganic chemistry is the prediction of the surface structure of an oxide. Comparatively little is known about atomic arrangements at oxide surfaces at present, and there has been considerable discussion concerning the forces that control such arrangements. For instance, one model suggests that the dominant factor is a reduction of Coulomb forces; another favours minimization of 'dangling bonds' by charge transfer to states below the Fermi energy. The surface structure and properties of SrTiO(3)--a standard model for oxides with a perovskite structure--have been studied extensively. Here we report a solution of the 2 x 1 SrTiO(3) (001) surface structure obtained through a combination of high-resolution electron microscopy and theoretical direct methods. Our results indicate that surface rearrangement of TiO(6-x) units into edge-sharing blocks determines the SrO-deficient surface structure of SrTiO(3). We suggest that this structural concept can be extended to perovskite surfaces in general.  相似文献   

3.
Okamoto S  Millis AJ 《Nature》2004,428(6983):630-633
Surface science is an important and well-established branch of materials science involving the study of changes in material properties near a surface or interface. A fundamental issue has been atomic reconstruction: how the surface lattice symmetry differs from the bulk. 'Correlated-electron compounds' are materials in which strong electron-electron and electron-lattice interactions produce new electronic phases, including interaction-induced (Mott) insulators, many forms of spin, charge and orbital ordering, and (presumably) high-transition-temperature superconductivity. Here we propose that the fundamental issue for the new field of correlated-electron surface/interface science is 'electronic reconstruction': how does the surface/interface electronic phase differ from that in the bulk? As a step towards a general understanding of such phenomena, we present a theoretical study of an interface between a strongly correlated Mott insulator and a band insulator. We find dramatic interface-induced electronic reconstructions: in wide parameter ranges, the near-interface region is metallic and ferromagnetic, whereas the bulk phase on either side is insulating and antiferromagnetic. Extending the analysis to a wider range of interfaces and surfaces is a fundamental scientific challenge and may lead to new applications for correlated electron materials.  相似文献   

4.
C Barth  M Reichling 《Nature》2001,414(6859):54-57
Alumina is a technologically important oxide crystal because of its use as a catalyst and as a substrate for microelectronic applications. A precise knowledge of its surface atomic structure is a prerequisite for understanding and controlling the physical processes involved in many of its applications. Here we use a dynamic scanning force microscopy technique to image directly the atomic structure of the high-temperature phase of the alpha-Al2O3(0001) surface. Evidence for a surface reconstruction appears as a grid of protrusions that represent a rhombic unit cell, and we confirm that the arrangement of atoms is in the form of surface domains with hexagonal atomic order at the centre and disorder at the periphery. We show that, on exposing the surface to water and hydrogen, this surface structure is important in the formation of hydroxide clusters. These clusters appear as a regular pattern of rings that can be explained by self-organization processes involving cluster-surface and cluster-cluster interactions. Alumina has long been regarded as the definitive test for atomic-resolution force microscopy of insulators so the whole class of insulating oxides should now open for direct atomic-scale surface investigations.  相似文献   

5.
Bobrov K  Mayne AJ  Dujardin G 《Nature》2001,413(6856):616-619
The electronic properties of insulators such as diamond are of interest not only for their passive dielectric capabilities for use in electronic devices, but also for their strong electron confinement on atomic scales. However, the inherent lack of electrical conductivity in insulators usually prevents the investigation of their surfaces by atomic-scale characterization techniques such as scanning tunnelling microscopy (STM). And although atomic force microscopy could in principle be used, imaging diamond surfaces has not yet been possible. Here, we demonstrate that STM can be used in an unconventional resonant electron injection mode to image insulating diamond surfaces and to probe their electronic properties at the atomic scale. Our results reveal striking electronic features in high-purity diamond single crystals, such as the existence of one-dimensional fully delocalized electronic states and a very long diffusion length for conduction-band electrons. We expect that our method can be applied to investigate the electronic properties of other insulating materials and so help in the design of atomic-scale electronic devices.  相似文献   

6.
Gomes KK  Mar W  Ko W  Guinea F  Manoharan HC 《Nature》2012,483(7389):306-310
The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the relativistic magnetic quantum limit, which has so far been inaccessible in natural graphene. Molecular graphene provides a versatile means of synthesizing exotic topological electronic phases in condensed matter using tailored nanostructures.  相似文献   

7.
Ohtomo A  Muller DA  Grazul JL  Hwang HY 《Nature》2002,419(6905):378-380
The nature and length scales of charge screening in complex oxides are fundamental to a wide range of systems, spanning ceramic voltage-dependent resistors (varistors), oxide tunnel junctions and charge ordering in mixed-valence compounds. There are wide variations in the degree of charge disproportionation, length scale, and orientation in the mixed-valence compounds: these have been the subject of intense theoretical study, but little is known about the microscopic electronic structure. Here we have fabricated an idealized structure to examine these issues by growing atomically abrupt layers of LaTi(3+)O(3) embedded in SrTi(4+)O(3). Using an atomic-scale electron beam, we have observed the spatial distribution of the extra electron on the titanium sites. This distribution results in metallic conductivity, even though the superlattice structure is based on two insulators. Despite the chemical abruptness of the interfaces, we find that a minimum thickness of five LaTiO(3) layers is required for the centre titanium site to recover bulk-like electronic properties. This represents a framework within which the short-length-scale electronic response can be probed and incorporated in thin-film oxide heterostructures.  相似文献   

8.
MP Levendorf  CJ Kim  L Brown  PY Huang  RW Havener  DA Muller  J Park 《Nature》2012,488(7413):627-632
Precise spatial control over the electrical properties of thin films is the key capability enabling the production of modern integrated circuitry. Although recent advances in chemical vapour deposition methods have enabled the large-scale production of both intrinsic and doped graphene, as well as hexagonal boron nitride (h-BN), controlled fabrication of lateral heterostructures in these truly atomically thin systems has not been achieved. Graphene/h-BN interfaces are of particular interest, because it is known that areas of different atomic compositions may coexist within continuous atomically thin films and that, with proper control, the bandgap and magnetic properties can be precisely engineered. However, previously reported approaches for controlling these interfaces have fundamental limitations and cannot be easily integrated with conventional lithography. Here we report a versatile and scalable process, which we call 'patterned regrowth', that allows for the spatially controlled synthesis of lateral junctions between electrically conductive graphene and insulating h-BN, as well as between intrinsic and substitutionally doped graphene. We demonstrate that the resulting films form mechanically continuous sheets across these heterojunctions. Conductance measurements confirm laterally insulating behaviour for h-BN regions, while the electrical behaviour of both doped and undoped graphene sheets maintain excellent properties, with low sheet resistances and high carrier mobilities. Our results represent an important step towards developing atomically thin integrated circuitry and enable the fabrication of electrically isolated active and passive elements embedded in continuous, one-atom-thick sheets, which could be manipulated and stacked to form complex devices at the ultimate thickness limit.  相似文献   

9.
Electronically soft phases in manganites   总被引:1,自引:0,他引:1  
Milward GC  Calderón MJ  Littlewood PB 《Nature》2005,433(7026):607-610
The phenomenon of colossal magnetoresistance in manganites is generally agreed to be a result of competition between crystal phases with different electronic, magnetic and structural order; a competition which can be strong enough to cause phase separation between metallic ferromagnetic and insulating charge-modulated states. Nevertheless, closer inspection of phase diagrams in many manganites reveals complex phases where the two order parameters of magnetism and charge modulation unexpectedly coexist. Here we show that such experiments can be naturally explained within a phenomenological Ginzburg-Landau theory. In contrast to models where phase separation originates from disorder or as a strain-induced kinetic phenomenon, we argue that magnetic and charge modulation coexist in new thermodynamic phases. This leads to a rich diagram of equilibrium phases, qualitatively similar to those seen experimentally. The success of this model argues for a fundamental reinterpretation of the nature of charge modulation in these materials, from a localized to a more extended 'charge-density wave' picture. The same symmetry considerations that favour textured coexistence of charge and magnetic order may apply to many electronic systems with competing phases. The resulting 'electronically soft' phases of matter with incommensurate, inhomogeneous and mixed order may be general phenomena in correlated systems.  相似文献   

10.
Anomalous properties in ferroelectrics induced by atomic ordering.   总被引:1,自引:0,他引:1  
A M George  J I?iguez  L Bellaiche 《Nature》2001,413(6851):54-57
Complex insulating perovskite alloys are of considerable technological interest because of their large dielectric and piezoelectric responses. Examples of such alloys include (Ba1-xSrx)TiO3, which has emerged as a leading candidate dielectric material for the memory-cell capacitors in dynamic random access memories; and Pb(Zr1-xTix)O3 (PZT), which is widely used in transducers and actuators. The rich variety of structural phases that these alloys can exhibit, and the challenge of relating their anomalous properties to the microscopic structure, make them attractive from a fundamental point of view. Theoretical investigations of modifications to the atomic ordering of these alloys suggest the existence of further unexpected structural properties and hold promise for the development of new functional materials with improved electromechanical properties. Here we report ab initio calculations that show that a certain class of atomic rearrangement should lead simultaneously to large electromechanical responses and to unusual structural phases in a given class of perovskite alloys. Our simulations also reveal the microscopic mechanism responsible for these anomalies.  相似文献   

11.
Atomic-scale images of charge ordering in a mixed-valence manganite   总被引:3,自引:0,他引:3  
Renner Ch  Aeppli G  Kim BG  Soh YA  Cheong SW 《Nature》2002,416(6880):518-521
  相似文献   

12.
Wang Z  Saito M  McKenna KP  Gu L  Tsukimoto S  Shluger AL  Ikuhara Y 《Nature》2011,479(7373):380-383
The ability to resolve spatially and identify chemically atoms in defects would greatly advance our understanding of the correlation between structure and property in materials. This is particularly important in polycrystalline materials, in which the grain boundaries have profound implications for the properties and applications of the final material. However, such atomic resolution is still extremely difficult to achieve, partly because grain boundaries are effective sinks for atomic defects and impurities, which may drive structural transformation of grain boundaries and consequently modify material properties. Regardless of the origin of these sinks, the interplay between defects and grain boundaries complicates our efforts to pinpoint the exact sites and chemistries of the entities present in the defective regions, thereby limiting our understanding of how specific defects mediate property changes. Here we show that the combination of advanced electron microscopy, spectroscopy and first-principles calculations can provide three-dimensional images of complex, multicomponent grain boundaries with both atomic resolution and chemical sensitivity. The high resolution of these techniques allows us to demonstrate that even for magnesium oxide, which has a simple rock-salt structure, grain boundaries can accommodate complex ordered defect superstructures that induce significant electron trapping in the bandgap of the oxide. These results offer insights into interactions between defects and grain boundaries in ceramics and demonstrate that atomic-scale analysis of complex multicomponent structures in materials is now becoming possible.  相似文献   

13.
在正常金属/绝缘层/s波超导隧道结中,考虑绝缘层中的体杂质散射以及粗糙界面散射,运用Blon-der-Tinkham-Klapwijk(BTK)理论和Bogoliubov-de Gennes(BdG)方程,计算系统的微分电导.计算表明:(1)电导峰的位置与绝缘层的厚度密切相关,当绝缘层厚度具有几个相干长度时,隧道谱中的能级谐振峰数目增多,从而在超导能隙内形成一些束缚态;(2)粗糙界面散射和绝缘层中的杂质散射均能有效地压低电导峰,由此可解释理论与实验间尚存的偏差.  相似文献   

14.
Hayashi K  Matsuishi S  Kamiya T  Hirano M  Hosono H 《Nature》2002,419(6906):462-465
Materials that are good electrical conductors are not in general optically transparent, yet a combination of high conductivity and transparency is desirable for many emerging opto-electronic applications. To this end, various transparent oxides composed of transition or post-transition metals (such as indium tin oxide) are rendered electrically conducting by ion doping. But such an approach does not work for the abundant transparent oxides of the main-group metals. Here we demonstrate a process by which the transparent insulating oxide 12CaO x 7Al(2)O(3) (refs 7-13) can be converted into an electrical conductor. H(-) ions are incorporated into the subnanometre-sized cages of the oxide by a thermal treatment in a hydrogen atmosphere; subsequent irradiation of the material with ultraviolet light results in a conductive state that persists after irradiation ceases. The photo-activated material exhibits moderate electrical conductivity (approximately 0.3 S cm(-1)) at room temperature, with visible light absorption losses of only one per cent for 200-nm-thick films. We suggest that this concept can be applied to other main-group metal oxides, for the direct optical writing of conducting wires in insulating transparent media and the formation of a high-density optical memory.  相似文献   

15.
Kimoto K  Asaka T  Nagai T  Saito M  Matsui Y  Ishizuka K 《Nature》2007,450(7170):702-704
Microstructure characterization has become indispensable to the study of complex materials, such as strongly correlated oxides, and can obtain useful information about the origin of their physical properties. Although atomically resolved measurements have long been possible, an important goal in microstructure characterization is to achieve element-selective imaging at atomic resolution. A combination of scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) is a promising technique for atomic-column analysis. However, two-dimensional analysis has not yet been performed owing to several difficulties, such as delocalization in inelastic scattering or instrumentation instabilities. Here we demonstrate atomic-column imaging of a crystal specimen using localized inelastic scattering and a stabilized scanning transmission electron microscope. The atomic columns of La, Mn and O in the layered manganite La1.2Sr1.8Mn2O7 are visualized as two-dimensional images.  相似文献   

16.
Lattice defects are unavoidable structural units in materials and play an important role in determining material properties. Compared with the periodic structure of crystals, the atomic configurations of the lattice defects are determined by the coordinates of a large number of atoms, making it difficult to experimentally investigate them. In computational materials science, multiparameter optimization is also a difficult problem and experimental verification is usually required to determine the possibility of obtaining the structure and properties predicted by cal- culations. Using our recent studies on oxide surfaces as examples, we introduce the method of integrated aberra- tion-corrected electron microscopy and the first-principles calculations to analyze the atomic structure of lattice defects. The atomic configurations of defects were mea- sured using quantitative high-resolution electron micros- copy at subangstrom resolution and picometer precision, and then the electronic structure and dynamic behavior of materials can be studied at the atomic scale using the first- principles calculations. The two methods complement each other and can be combined to increase the understanding of the atomic structure of materials in both the time and space dimensions, which will benefit materials design at the atomic scale.  相似文献   

17.
贵金属Ir的原子状态与物理性质   总被引:1,自引:1,他引:0  
据纯金属单原子理论确定面心立方结构(fcc)贵金属Ir的原子状态为[Xe](5dn)^4.50(5dc)^2.50(6sc)^1.63_(6sf)^0.37,并对金属Ir的密排六方结构(hcp)和体心立方结构(bcc)初态特征晶体及初态液体的原子状态进行研究;在此基础上,解释Ir的原子状态与晶体结构的关系,计算fcc-Ir的势能曲线,体弹性模量、线热膨胀系数、晶格常数和比热容等随温度变化的曲线.研究结果表明:计算值与实验值基本吻合,计算值可用于电催化剂的优化设计.  相似文献   

18.
累积复合轧制(Accumulative Roll-Bonding,ARB)工艺作为一种大塑性变形工艺,近期在制备金属基多层复合材料方面受到关注.通过ARB工艺制备Al/Zn多层复合材料,重点观察Al/Zn多层复合材料界面间的变化规律.在扫描电子显微镜(SEM)下,可以明显地观察到在Al/Zn界面处扩散层的存在,说明在ARB工艺状态下,不同层之间存在扩散作用,但是X射线衍射(XRD)结果无法分辨材料内部结构.通过透射电子显微镜(TEM)观察第3周期ARB态Al/Zn多层复合材料截面,可以看到,在Al/Zn多层复合材料层间,存在4种形貌的组织,参考Al-Zn合金的时效析出过程可知,在ARB工艺过程中,Al过固溶体存在连续脱溶和非连续脱溶两种路径,其脱溶路径的不同主要与扩散到Al基体中的Zn浓度有关.  相似文献   

19.
Using first-principles density function for molecules method (DMol) and discrete variational method (DVM) based on the density functional theory, we studied the doping effect of Re in Ni3Al. The structure relaxation and the alloying energy show that Re has a strong A1 site preference and leads to the local deformation, which is in agreement with the experimental results and other theoretical results. In addition, the charge density difference and the bond order show that Re can strongly enhance the interatomic interaction between the nearest neighbor atoms. From the density of states and the Pauli spectrum, we find that resonance states and localized states are induced by doping Re, and the doped Re atom forms the hybridized bond with the nearest neighbor atoms.  相似文献   

20.
Attosecond spectroscopy in condensed matter   总被引:1,自引:0,他引:1  
Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10(-18) s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10(-15) s) timescale and has been mapped in solids in real time using femtosecond X-ray sources. Here we extend the attosecond techniques previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号