首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
波利亚曾提出并否定回答了与 L agrange中值定理有关的问题 :对于 y=f(x) ,x∈ (a,b) ,是否对任意的 ξ∈(a,b)都存在 x1 ,x2 ∈ (a,b) ,x1 <ξ相似文献   

2.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

3.
利用函数f(x)在积分区间[a,b]端点的函数值及各阶导数值,对函数f(x)在[a,b]上的定积分进行估计,进而得到若干积分不等式.主要结果如下:若函数f(x)是[a,b]上n+1次可微函数,且|f(n+1)(x)|≤M(M>0),则|∫baf(x)dx-x∑k=0(b-a)k+1/2k+1(k+1)![f(k)(a)+(-1)kf(b)]|≤1/2n+1(n+2)!M(b-a)n+2  相似文献   

4.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

5.
G.Polya曾提出并否定回答了与 L agrange中值定理有关的问题 :对于 y=f( x) ,x∈ ( a,b)是否对任意的 ξ∈ ( a,b)都存在 x1,x2 ∈ ( a,b) ,x1<ξ相似文献   

6.
应用Zalcman引理研究了与导数有分担值的全纯函数族的正规族,把分担值减弱为单项分担值,得到了如下的结论:设F是区域D内的一族全纯函数,a,b是非零有穷复数,若对于每个f(z)∈F,若F满足:(1)f(z)=0=f′(z)=a,f′(z)=a=f′′(z)=b则F在D内正规;(2)k≥2为一整数,b为一正数f(z)=0=f′(z)=a,f′(z)=a=f(k)(z)≤b则F在D内正规.  相似文献   

7.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

8.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

9.
提到中值定理,读者会想到罗尔、拉格朗日、柯西等微分中值定理及积分中值定理。文[1]中又提出了微分学中的一个结论(称为中值定理),表述如下:定理设函数 f(x),g(x)在[a,6]上连续,在(a,6)内有连续导数 f′(x),g′(x),g′(x)≠0,则存在ξ∈[a,b]使有  相似文献   

10.
早在数学的启蒙阶段,随着微积分理论的成熟,即建立了著名的拉格朗日中值定理:假设实函数f:[a,b]→R连续且在(a,b)上每一点处可微,则必存在t_0∈(a,b)使得(1) f(b)-f(a)=f′(t_0)(b-a). 本世纪以来,随着泛函分析微分理论的发展,又有相应的微分中值定理出现,例如弱可  相似文献   

11.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

12.
四阶常微分方程两点边值问题解的存在唯一性   总被引:1,自引:0,他引:1  
讨论四阶两点常微分方程边值问题 y(4) =f(x ,y ,y′) ,边界条件的解的存在唯一性 ,其中 f :[a ,b]×R×R→R 连续 ,相应的边界条件为 :y(a) =y(b) =y″(a) =y″(b) =0 ;y(a) =y(b) =y″(a) =y (b) =0 ;y(a) =y′(b) =y″(a) =y″(b) =0 ;y(a) =y′(b) =y″(a) =y (b) =0 .在假设函数 f(x ,y ,y′) 满足相应的Lipschitz条件下通过构造 X =C1[a,b] 中的范数给出了四阶两点常微分方程边值问题解的存在唯一性结论  相似文献   

13.
将著名的Hadamard不等式作如下推广:设f:[a,b]→R是连续凸函数,函数fk(x)满足d^kfk(x)/dx^k=f(x)(↓Ax∈[a,b],k=1,2, ……),y记G(a,b)=k^k(b-a)^-k∑j=0^k(k j)(-1)jfk(ja (k-j)b/k),则1/4(f(a) f(b) 2f(a b/2))≥(b-a)^-1∫a^bf(x)dx=G1(a,b)≥ ……≥Gk(a,b)≥f(a b)/2。  相似文献   

14.
本文继续引用上、下解方法,讨论如下非线性双曲型方程Cauchy问题: u_(xy)=f(x,y,μ,μ_x,μ_y) (x,y)∈Q V(x,y)∈C:u_x=σ′(x),u_y=τ′(y),u=σ(x)+τ(y) (1.1) 其中:Q={(x,y)∈R~2:x∈[a,b],u(x)≤y≤μ(a)}。(0≤a相似文献   

15.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

16.
本文给出并论证了积分中值定理中的ξ,当 b→a~+时,将趋于(a,b)的中点,即·第一,二积分中值定理中的ξ分别有积分中值定理若函数 f(x)在区间[a,b]上连续,则在[a,b]上至少存在一点ξ,使得  相似文献   

17.
此文中我们研究广义数域E上的连续函数。如果y=f(x)是一广义数函数,在点x~0s∈E处具有(m、n)-导数,则d_ny/d_mx(x~0)=(…,0,(?)y_n(x~0)/(?)再x_m,0,…)。如果y=f(x)在开集G(?)E上的每点具存(m,n)一导数,I=[a,b](?)G,[f(a)]_n=[t(b)]_n,并且当i相似文献   

18.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

19.
设G是一个图,用V(G)和E(G)表示它的顶点集和边集,并设g和f是定义在V(G)上的两个整数值函数且g相似文献   

20.
利用介值定理和拉格朗日中值定理证明了命题:设函数f(x)在[0,1]上连续,在(0,1)内可导,且f ′(x)>0, f(0)=0, f(1)=1,则存在ξ1,ξ2∈(0,1),使得1/f′(ξ1)+1/f′(ξ2)=2。通过对命题证明过程的分析,对命题进行了推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号