首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Bacterial disease resistance in Arabidopsis through flagellin perception   总被引:2,自引:0,他引:2  
Zipfel C  Robatzek S  Navarro L  Oakeley EJ  Jones JD  Felix G  Boller T 《Nature》2004,428(6984):764-767
Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance.  相似文献   

2.
MAP kinase signalling cascade in Arabidopsis innate immunity   总被引:29,自引:0,他引:29  
  相似文献   

3.
Lee H  Chah OK  Sheen J 《Nature》2011,473(7347):376-379
Stem cells in the shoot apical meristem (SAM) of plants are the self-renewable reservoir for leaf, stem and flower organogenesis. In nature, disease-free plants can be regenerated from SAM despite infections elsewhere, which underlies a horticultural practice for decades. However, the molecular basis of the SAM immunity remains unclear. Here we show that the CLAVATA3 peptide (CLV3p), expressed and secreted from stem cells and functioning as a key regulator of stem-cell homeostasis in the SAM of Arabidopsis, can trigger immune signalling and pathogen resistance via the flagellin receptor kinase FLS2 (refs 5, 6). CLV3p-FLS2 signalling acts independently from the stem-cell signalling pathway mediated through CLV1 and CLV2 receptors, and is uncoupled from FLS2-mediated growth suppression. Endogenous CLV3p perception in the SAM by a pattern recognition receptor for bacterial flagellin, FLS2, breaks the previously defined self and non-self discrimination in innate immunity. The dual perception of CLV3p illustrates co-evolution of plant peptide and receptor kinase signalling for both development and immunity. The enhanced immunity in SAM or germ lines may represent a common strategy towards immortal fate in plants and animals.  相似文献   

4.
Structural basis of steroid hormone perception by the receptor kinase BRI1   总被引:1,自引:0,他引:1  
Hothorn M  Belkhadir Y  Dreux M  Dabi T  Noel JP  Wilson IA  Chory J 《Nature》2011,474(7352):467-471
Polyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5?? resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling.  相似文献   

5.
6.
Structural insight into brassinosteroid perception by BRI1   总被引:1,自引:0,他引:1  
She J  Han Z  Kim TW  Wang J  Cheng W  Chang J  Shi S  Wang J  Yang M  Wang ZY  Chai J 《Nature》2011,474(7352):472-476
Brassinosteroids are essential phytohormones that have crucial roles in plant growth and development. Perception of brassinosteroids requires an active complex of BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED KINASE 1 (BAK1). Recognized by the extracellular leucine-rich repeat (LRR) domain of BRI1, brassinosteroids induce a phosphorylation-mediated cascade to regulate gene expression. Here we present the crystal structures of BRI1(LRR) in free and brassinolide-bound forms. BRI1(LRR) exists as a monomer in crystals and solution independent of brassinolide. It comprises a helical solenoid structure that accommodates a separate insertion domain at its concave surface. Sandwiched between them, brassinolide binds to a hydrophobicity-dominating surface groove on BRI1(LRR). Brassinolide recognition by BRI1(LRR) is through an induced-fit mechanism involving stabilization of two interdomain loops that creates a pronounced non-polar surface groove for the hormone binding. Together, our results define the molecular mechanisms by which BRI1 recognizes brassinosteroids and provide insight into brassinosteroid-induced BRI1 activation.  相似文献   

7.
BRI1 is a critical component of a plasma-membrane receptor for plant steroids   总被引:68,自引:0,他引:68  
Wang ZY  Seto H  Fujioka S  Yoshida S  Chory J 《Nature》2001,410(6826):380-383
Most multicellular organisms use steroids as signalling molecules for physiological and developmental regulation. Two different modes of steroid action have been described in animal systems: the well-studied gene regulation response mediated by nuclear receptors, and the rapid non-genomic responses mediated by proposed membrane-bound receptors. Plant genomes do not seem to encode members of the nuclear receptor superfamily. However, a transmembrane receptor kinase, brassinosteroid-insensitive1 (BRI1), has been implicated in brassinosteroid responses. Here we show that BRI1 functions as a receptor of brassinolide, the most active brassinosteroid. The number of brassinolide-binding sites and the degree of response to brassinolide depend on the level of BRI1 protein. The brassinolide-binding activity co-immunoprecipitates with BRI1, and requires a functional BRI1 extracellular domain. Moreover, treatment of Arabidopsis seedlings with brassinolide induces autophosphorylation of BRI1, which, together with our binding studies, shows that BRI1 is a receptor kinase that transduces steroid signals across the plasma membrane.  相似文献   

8.
植物通过模式识别受体识别病原微生物保守的分子,开启第一层次免疫屏障,以此实现对各种微生物的非寄主抗性和产生基础防御。第一个被鉴定的植物模式识别受体是识别细菌鞭毛蛋白的拟南芥FLS2,围绕FLS2的大量研究为其他模式识别受体的研究提供了范例,促进了植物免疫理论的建立和发展。通过介绍FLS2的发现过程、命名过程的插曲、结构与功能、激活步骤与相关元件、调控的分子机制、FLS2与病原微生物效应因子的相互作用以及FLS2在被子植物中的系统发生关系,对FLS2研究中显现的蛋白污染和C末端标签问题进行了分析,并介绍了依靠遗传转化植物模式识别受体基因,培育广谱耐久抗病植物的前景。  相似文献   

9.
Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns, and members of the pro-inflammatory interleukin-1 receptor (IL-1R) family, share homologies in their cytoplasmic domains called Toll/IL-1R/plant R gene homology (TIR) domains. Intracellular signalling mechanisms mediated by TIRs are similar, with MyD88 (refs 5-8) and TRAF6 (refs 9, 10) having critical roles. Signal transduction between MyD88 and TRAF6 is known to involve the serine-threonine kinase IL-1 receptor-associated kinase 1 (IRAK-1) and two homologous proteins, IRAK-2 (ref. 12) and IRAK-M. However, the physiological functions of the IRAK molecules remain unclear, and gene-targeting studies have shown that IRAK-1 is only partially required for IL-1R and TLR signalling. Here we show by gene-targeting that IRAK-4, an IRAK molecule closely related to the Drosophila Pelle protein, is indispensable for the responses of animals and cultured cells to IL-1 and ligands that stimulate various TLRs. IRAK-4-deficient animals are completely resistant to a lethal dose of lipopolysaccharide (LPS). In addition, animals lacking IRAK-4 are severely impaired in their responses to viral and bacterial challenges. Our results indicate that IRAK-4 has an essential role in innate immunity.  相似文献   

10.
Horng T  Barton GM  Flavell RA  Medzhitov R 《Nature》2002,420(6913):329-333
Mammalian Toll-like receptors (TLRs) function as sensors of infection and induce the activation of innate and adaptive immune responses. Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defence responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88 (refs 1-3). Although members of the TLR and the interleukin-1 (IL-1) receptor families all signal through MyD88, the signalling pathways induced by individual receptors differ. TIRAP, an adaptor protein in the TLR signalling pathway, has been identified and shown to function downstream of TLR4 (refs 4, 5). Here we report the generation of mice deficient in the Tirap gene. TIRAP-deficient mice respond normally to the TLR5, TLR7 and TLR9 ligands, as well as to IL-1 and IL-18, but have defects in cytokine production and in activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases in response to lipopolysaccharide, a ligand for TLR4. In addition, TIRAP-deficient mice are also impaired in their responses to ligands for TLR2, TLR1 and TLR6. Thus, TIRAP is differentially involved in signalling by members of the TLR family and may account for specificity in the downstream signalling of individual TLRs.  相似文献   

11.
Hayashi F  Smith KD  Ozinsky A  Hawn TR  Yi EC  Goodlett DR  Eng JK  Akira S  Underhill DM  Aderem A 《Nature》2001,410(6832):1099-1103
The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, but not on the host. Toll-like receptors (TLRs) recognize PAMPs and mediate the production of cytokines necessary for the development of effective immunity. Flagellin, a principal component of bacterial flagella, is a virulence factor that is recognized by the innate immune system in organisms as diverse as flies, plants and mammals. Here we report that mammalian TLR5 recognizes bacterial flagellin from both Gram-positive and Gram-negative bacteria, and that activation of the receptor mobilizes the nuclear factor NF-kappaB and stimulates tumour necrosis factor-alpha production. TLR5-stimulating activity was purified from Listeria monocytogenes culture supernatants and identified as flagellin by tandem mass spectrometry. Expression of L. monocytogenes flagellin in non-flagellated Escherichia coli conferred on the bacterium the ability to activate TLR5, whereas deletion of the flagellin genes from Salmonella typhimurium abrogated TLR5-stimulating activity. All known TLRs signal through the adaptor protein MyD88. Mice challenged with bacterial flagellin rapidly produced systemic interleukin-6, whereas MyD88-null mice did not respond to flagellin. Our data suggest that TLR5, a member of the evolutionarily conserved Toll-like receptor family, has evolved to permit mammals specifically to detect flagellated bacterial pathogens.  相似文献   

12.
AbdAlla S  Lother H  Quitterer U 《Nature》2000,407(6800):94-98
The vasopressor angiotensin II regulates vascular contractility and blood pressure through binding to type 1 angiotensin II receptors (AT1; refs 1, 2). Bradykinin, a vasodepressor, is a functional antagonist of angiotensin II (ref. 3). The two hormone systems are interconnected by the angiotensin-converting enzyme, which releases angiotensin II from its precursor and inactivates the vasodepressor bradykinin. Here we show that the AT1 receptor and the bradykinin (B2) receptor also communicate directly with each other. They form stable heterodimers, causing increased activation of G alpha(q) and G alpha(i) proteins, the two major signalling proteins triggered by AT1. Furthermore, the endocytotic pathway of both receptors changed with heterodimerization. This is the first example of signal enhancement triggered by heterodimerization of two different vasoactive hormone receptors.  相似文献   

13.
植物天然免疫系统研究进展   总被引:2,自引:1,他引:1  
很多植物病原菌严重地损害植物的生长和繁殖。植物与病原体协同进化过程中,也逐渐形成了一系列复杂高效的保护机制来抵御病原物的侵染。植物中抵抗外界微生物刺激所形成的系统被称为植物天然免疫系统,可分为两个层次。第1个层次是植物模式识别受体(PRRs)识别病原相关分子模式(PAMPs),触发病原相关分子模式触发的免疫反应(PTI),激活植物体中促丝裂原活化蛋白激酶(MAPK)信号通路使植物产生早期应答反应。PTI适应性较广,可识别和响应包括非致病菌的许多类微生物。第2个层次是病原菌产生效应因子抑制基础免疫响应PTI,而植物产生针对性更强的抗性蛋白(R蛋白)识别效应因子,并通过效应因子触发型免疫(ETI)来重建植物的抗性。笔者综述了近年来植物天然免疫系统的研究进展,认为随着对植物天然免疫系统研究的深入,应重视PTI和ETI的结合利用,有效扩大植物抗菌谱,改良植物ETI抗性。  相似文献   

14.
Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.  相似文献   

15.
Downstream nuclear events in brassinosteroid signalling   总被引:2,自引:0,他引:2  
Vert G  Chory J 《Nature》2006,441(7089):96-100
  相似文献   

16.
Ye X  Hama K  Contos JJ  Anliker B  Inoue A  Skinner MK  Suzuki H  Amano T  Kennedy G  Arai H  Aoki J  Chun J 《Nature》2005,435(7038):104-108
Every successful pregnancy requires proper embryo implantation. Low implantation rate is a major problem during infertility treatments using assisted reproductive technologies. Here we report a newly discovered molecular influence on implantation through the lysophosphatidic acid (LPA) receptor LPA3 (refs 2-4). Targeted deletion of LPA3 in mice resulted in significantly reduced litter size, which could be attributed to delayed implantation and altered embryo spacing. These two events led to delayed embryonic development, hypertrophic placentas shared by multiple embryos and embryonic death. An enzyme demonstrated to influence implantation, cyclooxygenase 2 (COX2) (ref. 5), was downregulated in LPA3-deficient uteri during pre-implantation. Downregulation of COX2 led to reduced levels of prostaglandins E2 and I2 (PGE2 and PGI2), which are critical for implantation. Exogenous administration of PGE2 or carbaprostacyclin (a stable analogue of PGI2) into LPA3-deficient female mice rescued delayed implantation but did not rescue defects in embryo spacing. These data identify LPA3 receptor-mediated signalling as having an influence on implantation, and further indicate linkage between LPA signalling and prostaglandin biosynthesis.  相似文献   

17.
Choi MH  Lee IK  Kim GW  Kim BU  Han YH  Yu DY  Park HS  Kim KY  Lee JS  Choi C  Bae YS  Lee BI  Rhee SG  Kang SW 《Nature》2005,435(7040):347-353
Platelet-derived growth factor (PDGF) is a potent mitogenic and migratory factor that regulates the tyrosine phosphorylation of a variety of signalling proteins via intracellular production of H2O2 (refs 1, 2-3). Mammalian 2-Cys peroxiredoxin type II (Prx II; gene symbol Prdx2) is a cellular peroxidase that eliminates endogenous H2O2 produced in response to growth factors such as PDGF and epidermal growth factor; however, its involvement in growth factor signalling is largely unknown. Here we show that Prx II is a negative regulator of PDGF signalling. Prx II deficiency results in increased production of H2O2, enhanced activation of PDGF receptor (PDGFR) and phospholipase Cgamma1, and subsequently increased cell proliferation and migration in response to PDGF. These responses are suppressed by expression of wild-type Prx II, but not an inactive mutant. Notably, Prx II is recruited to PDGFR upon PDGF stimulation, and suppresses protein tyrosine phosphatase inactivation. Prx II also leads to the suppression of PDGFR activation in primary culture and a murine restenosis model, including PDGF-dependent neointimal thickening of vascular smooth muscle cells. These results demonstrate a localized role for endogenous H2O2 in PDGF signalling, and indicate a biological function of Prx II in cardiovascular disease.  相似文献   

18.
S A Kliewer  K Umesono  D J Noonan  R A Heyman  R M Evans 《Nature》1992,358(6389):771-774
Peroxisomes are cytoplasmic organelles which are important in mammals in modulation of lipid homeostasis, including the metabolism of long-chain fatty acids and conversion of cholesterol to bile salts (reviewed in refs 1 and 2). Amphipathic carboxylates such as clofibric acid have been used in man as hypolipidaemic agents and in rodents they stimulate the proliferation of peroxisomes. These agents, termed peroxisome proliferators, and all-trans retinoic acid activate genes involved in peroxisomal-mediated beta-oxidation of fatty acids. Here we show that the receptor activated by peroxisome proliferators and the retinoid X receptor-alpha (ref. 6) form a heterodimer that activates acyl-CoA oxidase gene expression in response to either clofibric acid or the retinoid X receptor-alpha ligand, 9-cis retinoic acid, an all-trans retinoic acid metabolite; simultaneous exposure to both activators results in a synergistic induction of gene expression. These data demonstrate the coupling of the peroxisome proliferator and retinoid signalling pathways and provide evidence for a physiological role for 9-cis retinoic acid in modulating lipid metabolism.  相似文献   

19.
The CD4 T-cell surface antigen is an integral membrane glycoprotein of relative molecular mass 55,000 which binds class II major histocompatibility complex (MHC) molecules expressed on antigen presenting cells (APCs). It is thought to stabilize physical interactions between T cells and APCs (for a review, see ref. 1). Evidence is accumulating that suggests that CD4 can transduce an independent signal during T-cell activation. It has recently been shown that CD4 expressed on human and murine T cells is physically associated with the Src-related tyrosine protein kinase p56lck (refs 7, 8). These results indicate that CD4 can function as a signal transducer and suggest that tyrosine phosphorylation events may be important in CD4-mediated signalling. Here, we present evidence that cross-linking of the CD4 receptor induces a rapid increase in the tyrosine-specific protein kinase activity of p56lck and is associated with the rapid phosphorylation of one of the subunits (zeta) of the T-cell receptor complex on tyrosine residues. These data provide direct evidence for a specific CD4 signal transduction pathway that is mediated through p56lck and suggest that some of the tyrosine phosphorylation events detected during antigen-mediated T-cell activation may result from signalling through this surface molecule.  相似文献   

20.
The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3   总被引:15,自引:0,他引:15  
CD2 (known also as T11 (ref. 1), LFA-2 (ref. 2) and the erythrocyte rosette receptor (ref. 3] is a functionally important T lymphocyte surface glycoprotein of relative molecular mass 50,000 to 58,000 (Mr 50-58 K) which appears early in thymocyte ontogeny and is present on all mature T cells. Monoclonal antibodies to CD2 inhibit cytotoxic T-lymphocyte (CTL)-mediated killing by binding to the T lymphocyte and blocking adhesion to the target cell. Such antibodies also inhibit T helper cell responses including antigen-stimulated proliferation, interleukin-2 (IL-2) secretion, and IL-2 receptor expression. Certain combinations of monoclonal antibodies to CD2 epitopes trigger proliferation of peripheral blood T lymphocytes, cytotoxic effector function and expression of IL-2 receptors by thymocytes, resulting in thymocyte proliferation in the presence of exogenous IL-2 (ref. 11). These findings suggest that CD2 can function in signalling as well as being an adhesion molecule. To understand the role of CD2 in T-cell adhesion and activation, it is essential to define its natural ligand. Our previous observation that purified CD2 inhibits rosetting of T lymphocytes with sheep erythrocytes and can be absorbed by sheep erythrocytes suggested it also might bind with detectable affinity to human cells. We now report that CD2 binds to a cell-surface antigen known as lymphocyte function-associated antigen-3 (LFA-3) with high affinity, and can mediate adhesion of lymphoid cells via interaction with LFA-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号