首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
安时积分公式中相关参数的取值是影响安时积分法估算电池SOC(state of charge)的估算精度的重要因素。各类提高估算精度的方法分别对某些参数进行了修正和优化,但缺少各参数对精度影响大小的比较。该文通过对3.2V/11 A.h磷酸铁锂动力电池进行测试,比较了各参数对于提高SOC估算精度的重要性。结果表明,初始SOC修正方法对于提高安时积分法的精度最为重要。  相似文献   

2.
针对电池SOC估计误差较大的问题,本文提出了双卡尔曼滤波算法。介绍了电池常用的等效模型和使用方向,以双RC模型为基础建立了电池系统的空间方程,使用混合脉冲功率特性测试法得到了模型参数值;推导了安时积分法和扩展卡尔曼滤波原理,在基础上提出了双卡尔曼滤波算法,对双卡尔曼滤波的原理和公式实现进行了详细推导;设计了电池组的充放电实验对算法进行验证,结果表明安时积分法估计误差随时间不断增大,扩展卡尔曼算法估计误差震荡很大,双卡尔曼滤波的估计精度较高,最大估计误差只有0.13%。  相似文献   

3.
针对电池荷电状态的(SOC)估计误差较大的问题,提出了双卡尔曼滤波算法。介绍了电池常用的等效模型和使用方向,以双RC模型为基础建立了电池系统的空间方程,使用混合脉冲功率特性测试法得到了模型参数值。推导了安时积分法和扩展卡尔曼滤波原理,在基础上提出了双卡尔曼滤波算法,对双卡尔曼滤波的原理和公式实现进行了详细推导。设计了电池组的充放电实验对算法进行验证。结果表明安时积分法估计误差随时间不断增大,扩展卡尔曼算法估计误差振荡很大,双卡尔曼滤波的估计精度较高,最大估计误差只有0.13%。  相似文献   

4.
针对电动汽车用锂离子电池组,提出了一种能修正初始误差的荷电状态估算方法,即采用扩展卡尔曼滤波与安时积分的组合算法.在分析电池各种等效电路模型优缺点的基础上,选用具有双阻容并联网络的PNGV改进型电池模型,并以某锂电池为实验对象,对其进行模型参数识别.然后依据电池模型建立电池的非线性状态空间方程,并对电池开路电压与SOC的关系进行多项式拟合.恒流脉冲放电和ECE15工况下的两种实验均表明,文中算法可有效修正SOC的初始误差,并能保证估算精度.  相似文献   

5.
为了解决传统安时-开路电压法荷电状态(state of charge,SOC)初值SOC_0误差大,忽略了估算过程中温度等影响因素对估算精度的影响等问题,提出了改进的安时积分-开路电压法:根据不同温度、循环使用次数下的实验数据,拟合出SOC与开路电压(open circuit voltage,OCV)、温度、使用次数的函数关系,从而获取准确的SOC_0;结合实验分析温度、放电倍率、使用次数对于安时积分的影响,并对其进行修正和优化。实验表明,改进的安时-开路电压法可将估算精度提高至97%。  相似文献   

6.
全钒液流电池(vanadium redox flow battery,VRB)荷电状态(state of charge,SOC)是评价电池性能、估算电池容量的重要参数,也是储能系统管理和调控的关键依据。文章通过搭建实时仿真平台,采用基于卡尔曼滤波原理,在扩展卡尔曼滤波(extended Kalman filter,EKF)算法的基础上提出的双卡尔曼滤波(double Kalman filter,DKF)算法对全钒液流电池SOC进行在线估计,并将其与传统的安时积分法测量方式进行对比分析。实验表明,该方法相比于安时积分法具有更好的准确性,且估算误差在2%以内。  相似文献   

7.
安时法是目前估算锂离子电池荷电状态(SOC)最常用的方法之一.由于安时法不能估计初始荷电状态(SOC0),且难于准确测量库仑效率和电池可用容量变化,会造成累计误差,影响SOC估算精度.考虑锂离子电池的可用容量会随环境温度、放电电流以及电池老化等性能影响,结合开路电压法和安时法,对比实验数据进行误差分析与校正,提出了一种提高SOC估算精度的修正参数方法.仿真结果表明,用修正参数的安时法估算电池剩余电量可以减少误差,提高精度.  相似文献   

8.
信号噪声干扰、电池模型对温度与老化的适应性及单体不一致性等因素直接影响电池组电荷状态(State of Charge,SOC)估算精度.为实现锂离子电池组SOC的准确估计,提出了一种使用交互多模型(Interacting Multiple Model,IMM)和自适应电池状态估计器(Adaptive Battery State Estimator,ABSE)相结合的估算方法.首先,基于电池组综合特性建立电池交互模型,通过ABSE对单体SOC进行估算并嵌入IMM模型中.然后,计算各模型的信息分配因子,并根据信息分配因子对各模型的SOC进行概率融合,得到精度较高的电池组SOC.最后,在不同温度的组合工况下,评估该算法的鲁棒性和普适性.实验结果表明,该方法适用于系统输入信号存在噪声、全气候工况和单体间存在不一致性的环境,在有效充放电期间平均误差小于2%.  相似文献   

9.
针对6轮足机器人动力电池的荷电状态(state of charge, SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive extended Kalman filtering,AEKF)相结合的估计算法。首先通过FFRLS算法辨识建立动力电池等效模型参数;然后利用AEKF对SOC在线估计,并为参数辨识提供准确的开路电压;最后以机器人锂电池包为对象,在动态应力测试工况(dynamic stress test , DST)下实验验证了该算法可以准确地估算动力电池SOC,SOC估计相对误差在2.5%以内。   相似文献   

10.
针对单一的等效电路模型难以准确描述全时段的锂离子电池、估计电池荷电状态(SOC)准确度低的问题,提出采用多模模型的锂离子电池荷电状态联合估计算法。利用电化学阻抗谱分析不同SOC下锂离子电池的阻抗分布,并以此构建等效电路模型来描述整个充放电过程中的锂离子电池,得到一种基于变阶RC模型的多模模型。利用贝叶斯定阶准则综合模型的准确度和实用性来确定具体阶数,采用带有遗忘因子的递推最小二乘法对模型参数进行在线辨识,利用扩展卡尔曼滤波算法(EKF)求得锂离子电池的实时SOC。在恒流工况以及动态应力测试工况下,与传统基于一阶RC模型和二阶RC模型的EKF算法进行了多组实验对比。结果表明:采用多模模型的联合算法在不同工况下估计的SOC精度提高了30%以上,并均可在两个迭代周期内追踪到准确值。  相似文献   

11.
为能在线准确估算电动汽车动力电池的荷电状态(SOC),提出了一种基于强追踪扩展卡尔曼滤波(STEKF)的锂离子电池的SOC估算方法,该滤波器引入了多重次优渐消因子;以某型锂离子电池为研究对象,基于电池的外特性及相关机理,建立了电池的二阶RC等效电路模型,使用最小二乘法辨识模型参数,然后按照等效电路模型建立电池的STEKF非线性状态空间方程,最后在ECE15工况下进行仿真。结果表明,STEKF估算电池SOC的误差保持在2%以内,该方法能准确估算电池的SOC。  相似文献   

12.
为提高安时积分法对荷电状态估计的精度,解决其估计误差随时间不断增大的问题,采用极限学习机算法建立了安时积分法的误差预测模型,该模型以电池工作电流作为输入,对应的安时积分法荷电状态估计误差作为输出,将误差预测模型与安时积分法进行融合,对安时积分法的荷电状态估计值进行校正,形成了安时积分法和极限学习机方法融合的锂离子电池荷电状态在线估计方法.仿真分析结果表明,相比安时积分法,融合方法可有效减小荷电状态估计误差,克服安时积分法估计误差随时间不断增大的问题.  相似文献   

13.
针对Ni-MH动力电池系统非线性的特点,提出一种Thevenin电路改进后的状态模型.根据动力池电流变化显著的特征,采用融合改进后UKF(IUKF)算法和安时(AH)算法的AH-IUKF融合算法,对动力电池荷电状态(SOC)进行估计,并对AH-IUKF融合算法在SOC预测中的收敛速度、估计精度和复杂度进行分析和比较.结果表明:AH-IUKF融合算法不仅复杂度低、精度高,而且能实现Ni-MH动力电池SOC的快速估计,在各种工况下估计误差可平稳在1%~3%范围内,解决了动力电池SOC实时在线估计误差较大和计算复杂的问题.  相似文献   

14.
针对遗传算法(genetic algorithm,GA)存在收敛速度慢、易陷入局部最优以及难以实现在线应用的问题,面向如动力电池等效电路模型一类非线性较强、实时性要求高的模型辨识问题,提出一种能够快速缩小搜索空间,且有效避免陷入局部最优的在线快速搜索的优化辨识框架,实现电动汽车动力电池等效电路模型参数在线快速辨识,扩展全局搜索优化算法的应用范围.进一步,将此算法应用于电池剩余荷电状态(SOC)估算问题,提出基于改进GA参数辨识技术的无迹粒子滤波SOC估算方法(IGA-UPF).并将此SOC估算方法与基于最小二乘参数辨识技术的无迹粒子滤波的SOC估算算法(LS-UPF)作比较,结果验证了本文提出的在线快速参数辨识框架具有更好的模型参数辨识精度.  相似文献   

15.
为了进一步提高锂离子动力电池荷电状态(SOC)的估计精度问题,在分析了电池电压、温度、电流和放电电量对电池SOC值的影响后,提出了一种新颖的混沌萤火虫算法(chaos firefly algorithm,CAF)和小波神经网络(WNN)相结合的锂离子动力电池SOC联合估计方法,该方法首次利用于电池SOC值估计中,通过新颖的混沌萤火虫算法优化小波神经网络,加入动量项优化网络的权值和调整修正参数,提高了网络的学习效率和SOC估计精度。克服神经网络进化缓慢并且容易陷入局部最小的缺陷,通过仿真和电池实际工况下实验,结果表明与WNN算法相比,所提出的方法具有更高的预测精度,均方根误差小于2%,验证了这一算法的可行性和有效性。  相似文献   

16.
基于单片机最小系统,针对在线蓄电池工作状况,设计了新型车用蓄电池检测仪。在剩余电量检测中将开路电压法和安时积分法相结合,相对于已有的一些剩余电量检测方法,该方法不仅可以更精确地检测剩余电量,而且能够分析出电池的老化程度。提出分电池检测法,能够对电池组工作中的不平衡情况发出警报,保证电池组的良好运作。在软硬件方面很好地实现上述功能,并设计了操作便捷的人机界面。  相似文献   

17.
锂离子动力电池荷电状态联合估计应用   总被引:1,自引:1,他引:0  
为了进一步提高锂离子动力电池荷电状态(SOC)的估计精度问题,在分析了电池电压、温度、电流和放电电量对电池SOC值的影响后,提出了一种新颖的混沌萤火虫算法(chaos firefly algorithm,CAF)和小波神经网络(WNN)相结合的锂离子动力电池SOC联合估计方法,该方法首次利用于电池SOC值估计中,通过新颖的混沌萤火虫算法优化小波神经网络,加入动量项优化网络的权值和调整修正参数,提高了网络的学习效率和SOC估计精度。克服神经网络进化缓慢并且容易陷入局部最小的缺陷,通过仿真和电池实际工况下实验,结果表明与WNN算法相比,所提出的方法具有更高的预测精度,均方根误差小于2%,验证了这一算法的可行性和有效性。  相似文献   

18.
为解决目前房车使用中存在的电池、 用电器的管理问题, 设计了一种以 Raspberry Pi 3B+为主控制器的房车电源管理系统, 该系统包括车载蓄电池监测模块和用电器监测模块。 电池监测模块利用电池专用监测芯片DS2438, 对电池组温度、 电压等车载蓄电池信息进行检测并统一管理, 完成单体蓄电池状态显示和故障报警提示; 用电器监测模块利用 RN8209 芯片检测房车用电器的电功率并及时通过主控制器对电器进行智能化管理。通过测试表明, 系统能准确测定电池和用电器的相关信息, 具有一定的实用性。 同时针对传统的充放电状态(SOC: State Of Charge)预测困难的问题, 提出了一种修正安时积分法,充分考虑了电池在实际使用中存在容量差的问题, 经 Matlab 仿真结果表明该方法有较高的估算精度, 可用于 SOC 估算策略。  相似文献   

19.
针对锂电池模型参数辨识不准确以及传统无迹卡尔曼滤波(UKF)无法对噪声进行实时更新,从而导致锂电池荷电状态(SOC)估计误差偏大的问题,提出遗忘因子递推最小二乘法-自适应无迹卡尔曼滤波(FFRLS-AUKF)算法。先利用遗忘因子递推最小二乘法(FFRLS)对电池二阶RC等效电路模型进行在线参数辨识,再将所辨识的各参数传给由UKF和改进的Sage-Husa算法结合得到的AUKF,从而完成对锂电池的SOC估计,并将其与FFRLS-UKF以及离线UKF所估计的结果相比较。从对SOC估计的误差曲线和平均绝对误差以及均方根误差的数值上对比,均可得出FFRLS-AUKF的精度更高,稳定性更好。  相似文献   

20.
用改进的安时计量法估计电动汽车动力电池SOC   总被引:17,自引:0,他引:17  
为了解决安时计量法不能估计初始荷电状态(SOC0)、难于准确测量库仑效率和电池可用容量变化的问题,提出折算库仑效率的定义,建立开路电压法、K a lm an滤波法和安时计量法的组合方法估计电池SOC。具体算法中,根据温度和老化对电池可用容量的影响试验建立电池容量的影响因素模型,基于单变量电池模型实现K a lm an滤波。使用11 085 s的镍氢电池组FUDS试验数据验证方法精度,经与放电试验真实值比较得到的误差为2.3%,优于安时计量法的19.7%,满足电动汽车对SOC估计误差8%的使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号