首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile virus (WNV), and related flaviviruses such as tick-borne encephalitis, Japanese encephalitis, yellow fever and dengue viruses, constitute a significant global human health problem. However, our understanding of the molecular interaction of such flaviviruses with mammalian host cells is limited. WNV encodes only 10 proteins, implying that it may use many cellular proteins for infection. WNV enters the cytoplasm through pH-dependent endocytosis, undergoes cycles of translation and replication, assembles progeny virions in association with endoplasmic reticulum, and exits along the secretory pathway. RNA interference (RNAi) presents a powerful forward genetics approach to dissect virus-host cell interactions. Here we report the identification of 305 host proteins that affect WNV infection, using a human-genome-wide RNAi screen. Functional clustering of the genes revealed a complex dependence of this virus on host cell physiology, requiring a wide variety of molecules and cellular pathways for successful infection. We further demonstrate a requirement for the ubiquitin ligase CBLL1 in WNV internalization, a post-entry role for the endoplasmic-reticulum-associated degradation pathway in viral infection, and the monocarboxylic acid transporter MCT4 as a viral replication resistance factor. By extending this study to dengue virus, we show that flaviviruses have both overlapping and unique interaction strategies with host cells. This study provides a comprehensive molecular portrait of WNV-human cell interactions that forms a model for understanding single plus-stranded RNA virus infection, and reveals potential antiviral targets.  相似文献   

2.
D Wilcock  D P Lane 《Nature》1991,349(6308):429-431
Replication of DNA occurs at discrete sites in eukaryotic cell nuclei, where replication proteins are clustered into large complexes, or 'replicases'. Similarly, viral DNA replication is a highly structured process, notably in herpes simplex virus type-1 (HSV-1; reviewed in ref. 4) in which large globular 'replication compartments' containing the viral replication machinery exist. Replicating cellular DNA redistributes to these compartments upon HSV-1 infection. We have now used antibodies raised against several cellular proteins to detect changes in their subnuclear localization on HSV-1 infection. We found that various proteins involved in cellular DNA replication move to sites of viral DNA synthesis, whereas a selection of non-replication proteins do not. The retinoblastoma protein and p53 (the products of two putative anti-oncogenes) relocate to the same sites as known DNA replication proteins, suggesting that they may be associated with DNA replication complexes in normal, uninfected cells.  相似文献   

3.
Viruses must enter host cells to replicate, assemble and propagate. Because of the restricted size of their genomes, viruses have had to evolve efficient ways of exploiting host cell processes to promote their own life cycles and also to escape host immune defence mechanisms. Many viral open reading frames (viORFs) with immune-modulating functions essential for productive viral growth have been identified across a range of viral classes. However, there has been no comprehensive study to identify the host factors with which these viORFs interact for a global perspective of viral perturbation strategies. Here we show that different viral perturbation patterns of the host molecular defence network can be deduced from a mass-spectrometry-based host-factor survey in a defined human cellular system by using 70 innate immune-modulating viORFs from 30 viral species. The 579 host proteins targeted by the viORFs mapped to an unexpectedly large number of signalling pathways and cellular processes, suggesting yet unknown mechanisms of antiviral immunity. We further experimentally verified the targets heterogeneous nuclear ribonucleoprotein?U, phosphatidylinositol-3-OH kinase, the WNK (with-no-lysine) kinase family and USP19 (ubiquitin-specific peptidase 19) as vulnerable nodes in the host cellular defence system. Evaluation of the impact of viral immune modulators on the host molecular network revealed perturbation strategies used by individual viruses and by viral classes. Our data are also valuable for the design of broad and specific antiviral therapies.  相似文献   

4.
5.
Binding of the human immunodeficiency virus (HIV) to infectable host cells, such as B and T lymphocytes, monocytes and colorectal cells, is mediated by a high-affinity interaction between the gp120 component of the viral envelope glycoprotein and the CD4 receptor. Upon binding, it is thought that the second component of the envelope, gp41, mediates fusion between the viral envelope and host cell membranes. However, the early steps of HIV infection have not yet been thoroughly elucidated. Viral entry was first reported to be mediated by pH-dependent receptor-mediated endocytosis; subsequent studies have shown entry to be pH-independent. Although direct fusion of virus to plasma membranes of infected cells has been observed by electron microscopy, it is still formally possible that the infectious path of the virus involves receptor-mediated endocytosis. To gain a better understanding of receptor function in viral entry, we have analysed the ability of several altered or truncated forms of CD4 to serve as effective viral receptors. Our results indicate that domains beyond the HIV-binding region of CD4 are not required for viral infection. Some of the altered forms of CD4 that serve as effective HIV receptors are severely impaired in their ability to be endocytosed. These experiments therefore support the notion that viral fusion to the plasma membrane is sufficient for infection.  相似文献   

6.
Angers S  Li T  Yi X  MacCoss MJ  Moon RT  Zheng N 《Nature》2006,443(7111):590-593
  相似文献   

7.
Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein.   总被引:30,自引:0,他引:30  
T G Boyer  M E Martin  E Lees  R P Ricciardi  A J Berk 《Nature》1999,399(6733):276-279
  相似文献   

8.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are characterized by early peaks of viraemia that decline as strong cellular immune responses develop. Although it has been shown that virus-specific CD8-positive cytotoxic T lymphocytes (CTLs) exert selective pressure during HIV and SIV infection, the data have been controversial. Here we show that Tat-specific CD8-positive T-lymphocyte responses select for new viral escape variants during the acute phase of infection. We sequenced the entire virus immediately after the acute phase, and found that amino-acid replacements accumulated primarily in Tat CTL epitopes. This implies that Tat-specific CTLs may be significantly involved in controlling wild-type virus replication, and suggests that responses against viral proteins that are expressed early during the viral life cycle might be attractive targets for HIV vaccine development.  相似文献   

9.
Proteome survey reveals modularity of the yeast cell machinery   总被引:4,自引:0,他引:4  
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.  相似文献   

10.
Jain A  Liu R  Ramani B  Arauz E  Ishitsuka Y  Ragunathan K  Park J  Chen J  Xiang YK  Ha T 《Nature》2011,473(7348):484-488
Proteins perform most cellular functions in macromolecular complexes. The same protein often participates in different complexes to exhibit diverse functionality. Current ensemble approaches of identifying cellular protein interactions cannot reveal physiological permutations of these interactions. Here we describe a single-molecule pull-down (SiMPull) assay that combines the principles of a conventional pull-down assay with single-molecule fluorescence microscopy and enables direct visualization of individual cellular protein complexes. SiMPull can reveal how many proteins and of which kinds are present in the in vivo complex, as we show using protein kinase A. We then demonstrate a wide applicability to various signalling proteins found in the cytosol, membrane and cellular organelles, and to endogenous protein complexes from animal tissue extracts. The pulled-down proteins are functional and are used, without further processing, for single-molecule biochemical studies. SiMPull should provide a rapid, sensitive and robust platform for analysing protein assemblies in biological pathways.  相似文献   

11.
Sequence of reovirus haemagglutinin predicts a coiled-coil structure   总被引:3,自引:0,他引:3  
The use of modern techniques has led to new insights into the molecular mechanisms of viral pathogenesis. Although the infectious process is quite complex, it is clear that one critical stage, the interaction of viral attachment proteins with cell-surface receptors, often has a major role in determining the pattern of infection. The mammalian reoviruses have served as useful models for understanding the molecular basis of viral pathogenesis. The mammalian reovirus haemagglutinin (sigma 1 protein), which is an outer capsid protein, has been shown to be a major factor in determining virus-host cell interactions. To further our understanding of the structure and function of the haemagglutinin, we have cloned a complementary DNA copy of the reovirus type 3 S1 double-stranded RNA gene which encodes the virus haemagglutinin and have sequenced the DNA complementary to the S1 gene. Analysis of the predicted amino-acid sequence of the virus haemagglutinin has allowed us to determine that the amino-terminal portion contains an alpha-helical coiled-coil structure and that the carboxy-terminal portion contains the receptor-interacting domains. Using this information, we propose here a model of how the reovirus haemagglutinin is attached to the virus particle.  相似文献   

12.
13.
Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage lambda to integrate or excise its genome into and out of the host chromosome. lambda recombination is carried out by the bacteriophage-encoded integrase protein (lambda-int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of lambda-int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of lambda-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.  相似文献   

14.
Swingler S  Brichacek B  Jacque JM  Ulich C  Zhou J  Stevenson M 《Nature》2003,424(6945):213-219
All primate lentiviruses (HIV-1, HIV-2, SIV) encode Nef proteins, which are important for viral replication and pathogenicity in vivo. It is not known how Nef regulates these processes. It has been suggested that Nef protects infected cells from apoptosis and recognition by cytotoxic T lymphocytes. Other studies suggest that Nef influences the activation state of the infected cell, thereby enhancing the ability of that cell to support viral replication. Here we show that macrophages that express Nef or are stimulated through the CD40 receptor release a paracrine factor that renders T lymphocytes permissive to HIV-1 infection. This activity requires the upregulation of B-cell receptors involved in the alternative pathway of T-lymphocyte stimulation. T lymphocytes stimulated through this pathway become susceptible to viral infection without progressing through the cell cycle. We identify two proteins, soluble CD23 and soluble ICAM, that are induced from macrophages by Nef and CD40L, and which mediate their effects on lymphocyte permissivity. Our results reveal a mechanism by which Nef expands the cellular reservoir of HIV-1 by permitting the infection of resting T lymphocytes.  相似文献   

15.
Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that is associated with considerable morbidity in the general population. Although it is known that the virion uses a basic fibroblast growth factor (FGF) receptor to penetrate vascular cells, it is not known how the viral particle recognizes and binds to this cell surface protein. Here we report that an immunoreactive basic FGF-like protein is associated with the viral particle and that this association appears responsible for viral uptake. Accordingly, HSV-1 infection of Swiss 3T3 cells stimulates the tyrosine phosphorylation of the specific substrate that characterizes the initial cellular response to basic FGF. Antibodies to basic FGF prevent this phosphorylation and inhibit HSV-1 uptake. Because no basic FGF sequence is found in the HSV-1 genome, a model for the infection for some target cells is presented whereby the viral particle uses host cell-derived basic FGF to ensure subsequent infectivity of newly replicated virus.  相似文献   

16.
DNA疫苗被称为继完速病原体疫苗和基因工程重组蛋白疫苗后的第3代疫苗,其兼有重组亚单位疫苗的安全性和减毒活疫苗的有效性。HIV感染的防治则以激发细胞免疫为主,以激发细胞免疫为主的DNA疫苗给HIV感染防治带来曙光。目前DNA疫苗在HIV感染防治研究方面已取得显著进展,其临床研究已证明具有明显的刺激机体细胞免疫的效果,尤其是一些细胞因子、趋化因子可明显增强HIV DNA疫苗的免疫反应。就DNA免疫佐剂、HIV病毒基因DNA疫苗作用机制以及加强HIV DNA疫苗的各种调节因素方面的研究进展进行综述,以促进HIV DNA疫苗防治的研究。  相似文献   

17.
The protein-protein interaction map of Helicobacter pylori   总被引:33,自引:0,他引:33  
With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function. As elementary constituents of cellular protein complexes and pathways, protein-protein interactions are key determinants of protein function. Here we have built a large-scale protein-protein interaction map of the human gastric pathogen Helicobacter pylori. We have used a high-throughput strategy of the yeast two-hybrid assay to screen 261 H. pylori proteins against a highly complex library of genome-encoded polypeptides. Over 1,200 interactions were identified between H. pylori proteins, connecting 46.6% of the proteome. The determination of a reliability score for every single protein-protein interaction and the identification of the actual interacting domains permitted the assignment of unannotated proteins to biological pathways.  相似文献   

18.
A Drosophila Polycomb group complex includes Zeste and dTAFII proteins   总被引:7,自引:0,他引:7  
  相似文献   

19.
T Shioda  J A Levy  C Cheng-Mayer 《Nature》1991,349(6305):167-169
Strains of human immunodeficiency virus type 1 (HIV-1) display a high degree of biological heterogeneity which may be linked to certain clinical manifestation of AIDS. They vary in their ability to infect different cell types, to replicate rapidly and to high titre in culture, to down-modulate the CD4 receptor, and to cause cytopathic changes in infected cells. Some of these in vitro properties correlate with pathogenicity of the virus in vivo. To map the viral determinants of the cellular host range of HIV-1, recombinant viruses were generated between biologically active molecular clones of HIV-1 isolates showing differences in infection of primary peripheral blood macrophages and established T-cell lines. We report here that a specific region of the envelope gp120 gene representing 159 amino-acid residues of glycoprotein gp120 seems to determine macrophage tropism, whereas an overlapping region representing 321 amino-acid residues determines T cell-line tropism. These studies provide a basis for relating functional domains of the HIV-1 env gene to pathogenic potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号