首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 796 毫秒
1.
界面端应力奇异性及界面应力分布规律研究   总被引:7,自引:0,他引:7  
戴瑛  嵇醒 《中国科学(G辑)》2007,37(4):535-543
均质体裂纹尖端应力奇异性,界面裂纹尖端应力奇异性和界面端应力奇异性是3种最受关注的应力奇异性,其中以界面端应力奇异性最复杂.界面端应力奇异性随双材料Dundurs常数α和β(材料因素)以及楔形角a和b(几何因素)而变,包括有3种情况:即无奇异性,非常数奇异性和非常数振荡奇异性.双材料界面端应力奇异性的复杂性是建立界面端脱黏判据的困难所在.研究界面端脱黏判据,除了要了解界面端应力奇异性指数外,还必须知道界面端附近的界面应力分布情况.采用Bogy的双材料半平面受集中力问题的梅林变换解,计算界面端附近的界面应力,研究其分布规律,为建立非常数应力奇异性的界面端脱黏判据提供理论参考.根据详尽的计算结果,可得到界面应力分布有以下几点规律:在ρ=1附近,界面剪应力存在一个极大值;在ρ=0.5附近,界面正应力存在一个极大值;随着界面端应力奇异性指数λs数值的变化,界面端点邻域δ的尺度发生从毫米、微米到纳米量级的变化,这是界面端应力奇异性独特的性质.界面端应力奇异性如何影响界面端的脱黏及其判据,与界面端点邻域δ的尺度从毫米、微米到纳米量级的变化,有着怎样的关系,是一个非常值得关注的新问题.这个问题的焦点是界面端界面脱黏发生点的位置,是发生在界面端点邻域δ内,还是在界面剪应力和界面正应力的二个极值点之间.根据双材料半平面受集中力问题的界面应力分布规律,对界面端界面脱黏发生点的位置,作了初步的讨论.  相似文献   

2.
利用反平面平板搭接界面端应力奇异性指数和应力场的理论公式,通过不同材料参数的组合和不同角度的变化,研究了正交异性双材料以及一种各向同性和一种正交异性双材料两种不同的结合材料反平面界面端应力奇异性和应力分布,得到了两种不同结合材料的应力分布规律和反平面平板搭接界面端断裂判据的初步理论。结果表明,随着Γ和θ的变化,不同结合材料界面端应力会呈现出不同的规律,这些规律可以作为在双材料界面端裂纹断裂准则或其它工程应用方面的依据。  相似文献   

3.
基于平面问题中各向同性与正交各向异性材料奇异点附近渐近场的基本解,文章给出了对称变形条件下端部位于正交异性/各向同性双材料界面的垂直裂纹裂尖应力奇异性的特征方程以及相应的位移场与奇异应力场的解析解。为了验证解析解的正确性,通过1个算例将应力奇异性指数和奇异应力分量角函数的理论值与有限元分析结果进行了对比,两者吻合得相当好。  相似文献   

4.
研究了正交异性双材料半无限界面裂纹问题。通过引入含有复奇异指数的新应力函数,利用复变函数方法将界面裂纹问题转化为求解一类广义重调和方程的边值问题,推出正交异性双材料界面裂纹尖端应力具有四种奇异性。并建立了四种奇异性下给定载荷条件时界面裂纹尖端应力强度因子的计算公式。通过算例验证了四种奇异性的存在性。  相似文献   

5.
扩展到界面的环裂纹偏离垂直界面的位置,就形成截锥面形界面裂纹,主尖端应力奇异性指数大小不仅依赖于两相材料常数α和β,同时也依赖于锥角的大小。据此利用渐近展开和分离变量相结合的方法对裂尖奇异性指数的变化进行了分析,结果表明,随着锥角和α,β的变化,会出现振荡奇异,当锥角为零,截锥面裂纹变为圆柱形界面裂纹。  相似文献   

6.
研究了双材料非对称的反平面界面端的问题,通过构造应力函数并结合复变方法,在给定的自由边界条件下,得到一组四阶齐次线性方程组,从而求解出双材料反平面非对称界面端的特征方程.在固定角度θ1情况下,选取一组材料参数为验证特征值λ的算例,并通过变换角度θ2、φj(j=1,2)的值来研究特征值θ1的变换规律,给出了不同情形下的相应图形.  相似文献   

7.
研究了各向同性与正交异性双材料Ⅲ型非对称界面端问题。利用复合材料断裂复变方法,根据任意角度的界面连续条件,求解一类调和方程组的边值问题,讨论了非对称情况下含奇异指数的特征方程,得到了Ⅲ型非对称凸角、凹角界面端的应力场、位移场、应力强度因子的表达式,以及斜平面角界面端应力场奇异性的变化规律。  相似文献   

8.
在正交异性双材料界面裂纹的理论解的基础上,进一步探讨分析了正交异性双材料界面裂纹尖端应力强度因子的振荡奇异性;并通过实例讨论了双材料弹性常数对应力强度因子奇异性的影响.这个结论对今后相关课题的研究提供了新思路,具有较好的参考价值.  相似文献   

9.
本文通过构造特殊的应力函数对正交异性复合材料裂纹与界面垂直的情形进行了研究. 得到了双材料裂纹与界面垂直时裂尖的特征方程,并对特征值进行了数值分析. 结果显示:应力具有幂次奇异性, 或没有奇异性.  相似文献   

10.
研究了各向异性与正交异性双材料Ⅲ型界面裂纹问题.通过构造新的应力函数,采用复合材料断裂复变方法,求解一类偏微分方程组边值问题,推导出各向异性与正交异性双材料Ⅲ型界面裂纹尖端附近的应力场、位移场以及应力强度因子的表达式。结果显示裂纹尖端附近应力具有r-1/2的奇异性,但没有振荡性;通过算例得到应力随极径r变化的规律;分析当角α=0时,获得了正交异性双材料Ⅲ型界面裂纹的应力场、位移场与文献一致,验证了结果的正确性。  相似文献   

11.
通过构造特殊应力函数,利用复合材料断裂复变方法,对正交异性双材料平面平板搭接界面端问题进行了研究,在特征方程组的判别式Δ1>0和Δ2<0的情形下,推出了平板搭接界面端的应力强度因子、应力场及位移场的理论公式,其结果没有振荡奇异性及裂纹面没有相互嵌入现象。  相似文献   

12.
给出了无限大体界面裂纹的特征展开式。该特征展开式表征了裂尖的应力振荡奇性,并满足裂面应力自由条件和界面上的应力位移连续条件。将Betti互等定理应用到界面裂纹问题中得到了新的路径无关积分,证明了M积分和Bueckner功共轭积分之间的关系。这个关系不受界面裂纹尖端应力振荡奇性的影响。对给定的辅助位移应力场,给定了相应的M积分与应力强度因子的关系。  相似文献   

13.
The electrically pcrmeable slit crack within a piezoelectric body is treated as a bonded interface in electrostatics. The electric boundary conditions along the interface should be the continuity of the tangent component of the electric field strength and the normal component of thc electric displacement. Using such boundary conditions, the problems of antiplane strain of collinear cracks between bonded dissimilar piezoelectric materiala are exactly analyzed. Solutions of the complex potentials in a closed form are given for a single and two interface cracks. It is shown from the solutions that the stress, strain, electric field strength and electric displacement have (1/2) type of singularity at the crack tip, and the energy release rate for crack propagation depends only on both stress intensity factor and strain intensity factor.  相似文献   

14.
双材料悬臂梁孔边界面裂纹应力强度因子计算   总被引:2,自引:0,他引:2  
采用有限元方法求解了在压缩载荷作用下双材料悬臂梁孔边界面裂纹问题.在界面裂纹尖端的周围,使用了由8节点二维等参单元退化而产生的四分之一节点奇异单元来模拟裂尖应力的奇异性.在有限元分析中,考虑了裂纹面的接触作用.应用最小二乘法计算了Ⅱ型应力强度因子.数值结果表明:孔的尺寸对Ⅱ型应力强度因子和裂纹面接触压力有很大的影响;随着摩擦系数的增大,Ⅱ型应力强度因子减少.忽略裂纹面的摩擦作用,Ⅱ型应力强度因子可能被高估.  相似文献   

15.
均质各向同性弹性含裂纹固体在外载荷作用下裂纹尖端场表现出奇异性。由两种弹性材料组成的界面裂纹结构,除表现出奇异性外,随着向裂纹尖端靠近,裂纹前方出现应力振荡特性和裂纹表面的相对位移相互嵌入现象。本文从破坏力学的角度对有关问题进行了分析讨论,并给出了适当力学模型的有限元法算例。  相似文献   

16.
损伤对复合材料层板层间裂纹奇异性的影响   总被引:2,自引:2,他引:0  
基于连续损伤理论,采用非线性多标量连续损伤模型和有限元法对含Ⅰ型裂纹的纤维增强复合材料层板的裂尖应力奇异性进行了分析·在计算中,应用了损伤与位移同时迭代的全耦合法,并考虑了几何非线性的影响·结果表明:有限元法分析含损伤裂尖应力场奇异性是有效的;在材料硬化阶段,含层间裂纹的层板裂尖前缘应力奇异性总是存在的;损伤演化、材料常数影响裂尖应力奇异性,当材料常数的变化使损伤增大时,将导致应力奇异性程度下降·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号