首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
用原子分子反应静力学原理推导出了Hinx(x=0、+1)分子离子的基态电子状态及其离解极限.在LANL2DZ水平基础上,用B3LYP方法计算了Hinx(x=0、+1)分子离子的基态电子状态的平衡几何Re和离解能De分别为Hin0.185 9 nm、2.789 6 eV;Hin+0.177 9 nm、2.789 2 eV,并在计算出来的一系列单点势能基础上,用正规方程组拟合Murrell-Sorbie(M-S)势能函数,得到相应态的解析势能函数,由此计算对应的光谱参数(Be、αe、ωe、ωeχe),计算结果分别为Hin4.919 3 cm-1、0.102 9 cm-1、1 390.657 8 cm-1和22.318 0 cm-1; Hin+5.013 1 cm-1、0.210 1 cm-1、158 606 328 cm-1和2 504 520 cm-1,计算值与实验和文献值基本一致,计算表明Hinx(x=0、+1)分子离子是可稳定存在的,其稳定性次序为Hin>Hin+.  相似文献   

2.
为了弄清BCl在金属蚀刻中的机理,了解BCl分子激发态势能函数和稳定性的基本信息是必要的.运用群论及原子分子反应静力学方法,推导出了BCl分子低激发态A1Π、a3Π1的电子态及相应的离解极限;使用SAC/SAC—CI方法,6-311 g(d)**基组对BCl分子低激发态A1Π、a3Π1的平衡结构和谐振频率进行了几何优化计算,并对BCl分子低激发态A1Π、a3Π1进行了单点能扫描计算,用正规方程组拟合Murrell—Sorbie函数,得到相应电子态的势能函数解析式,利用得到的势能函数计算了相对应的力常数(f2、f3、f4)和光谱数据(Be、αe、ωe、ωeχe),数据值分别为:基态BCI(X1Σ )的Re=0.1867 nm,De=1.4855 eV,Be=0.6228 cm-1,αe=0.0060 cm-1,ωe=810.2001 cm-1,ωeχe=4.981 cm-1;激发态BCI(a3Π1)的Re=0.1726 cm,De=6.1151 eV,Be=0.6843 cm-1,αe=0.0039 cm-1,ωe=897.8493 cm-1,ωeχe=5.2800 cm-1;激发态BCI(A1Π)的Re=0.1722 nm,De=7.1515 eV,Be=0.6799cm-1,αe=0.0085 cm-1,ωe=784.5359 cm-1,ωeχe=12.88 cm-1.结果与文献数据相符合;在基态的平衡位置处,计算了从基态到A1Π、a3Π1态的垂直激发能,其值分别为7.6291 eV,10.1023 eV.  相似文献   

3.
应用群论及原子分子反应静力学方法推导了NiH2的电子态及其离解极限,在MP2/6-311G**水平上,优化出NiH2(3Δg)分子稳定构型为D∞h,其平衡核间距Re=0.1573nm,∠HNiH=180°,同时计算出振动频率:对称伸缩振动频率υ1=2000cm-1,弯曲振动频率υ2=721cm-1和反对称伸缩振动频率υ3=1875cm-1.在此基础上,使用多体项展式理论方法,导出了基态NiH2分子的全空间解析势能函数,该势能函数准确地再现了NiH2(D∞h)平衡结构.  相似文献   

4.
采用aug-cc-pVQZ(弥散函数的基组)/Na、aug-cc-pVDZ(弥散函数的基组)/Ne以及中点键函数的大基组,使用单、双迭代并包含三重激发微扰校正的耦合簇CCSD(T)理论方法,计算了NeNa2基态146个基态单点能.通过拟合96个参数,给出了NeNa2三原子分子体系的基态分子势能函数的解析表达式,并分析了其基态二维势能面的特性,在此基础上绘出了NeNa2三原子分子体系的三维势能曲线.计算结果表明,NeNa2基态势能面存在2个较浅的势阱,对应于=80,R_NeNa=33a0处,势阱的阱深约为-675010-1cm-1和线型结构=0,R_NeNa=10a0处,势阱深度约为-234110-3cm-1.此三原子分子体系的势能面呈现出弱的角度各向异性.  相似文献   

5.
He-Li2体系势能面的从头计算研究   总被引:1,自引:0,他引:1  
采用超分子单双迭代耦合簇CCSD(T)方法和大基组,计算得到了He-Li2体系基态的全程势能面.计算结果表明该势能面存在2个势阱:在Rm=12.8a0处,阱深为1.861cm-1,对应于线性Li-Li-He构型,在Rm=12a0处,阱深为1.894cm-对应于T型He-li2.整个势能面呈现弱的角度各向异性.  相似文献   

6.
He-LiH势能面的ab initio计算   总被引:6,自引:5,他引:1  
采用超分子耦合簇理论CCSD(T)方法和由键函数3s3p2d1f组成的大基组,计算得到了He-LiH体系在冻结LiH键长情况下的全程势能面.该势能面存在2个势阱,较深的势阱对应于线性He-LiH构型,其中Rm为4.25a0,阱深为177.53cm-1 ,较浅的势阱对应于线性He-HLi构型,其中Rm为9.875a0,阱深仅为9.90cm-1,整个势能面表现强的各向异性.  相似文献   

7.
应用群论及原子分子反应静力学方法推导SiO2分子的电子态及其离解极限,在B3P86/cc-PVTZ水平上,对SiO2分子基态进行优化计算,得出基态SiO2分子的单重态能量最低,其稳定构型为D∞h构型,平衡核间距Re=0.151 3 nm、能量为-440.559 5 a.u..同时计算出基态的简正振动频率:对称伸缩振动频率v(Π)=1 005.63 cm-1,弯曲振动频率v(Σg)=297.86 cm-1和反对称伸缩振动频率v(Σu)=1 458.09 cm-1.在此基础上,使用多体项展式理论方法,导出了基态SiO2分子的全空间解析势能函数,该势能函数准确再现了SiO2(D∞h)的平衡结构.  相似文献   

8.
应用群论及原子分子反应静力学方法推导了OCS分子的电子态及其离解极限,采用B3P86方法,在CC-PVTZ水平上,优化出OCS基态分子稳定构型为三重态的Cs构型,其平衡核间距RC-S=0.1768 nm、RC-O=0.1179 nm、∠OCS=122.9°,能量为-512.0405a.u..同时计算出基态的简正振动频率:对称伸缩振动频率ν(A')=354.5cm-1,弯曲振动频率ν(A')=633.5 cm-1和反对称伸缩振动频率ν(A')=1792.8 cm-1.在此基础上,使用多体项展式理论方法,导出了基态OCS分子的全空间解析势能函数,该势能函数准确再现了OCS(Cs)平衡结构.  相似文献   

9.
应用群论及原子分子反应静力学方法推导了HOCl分子的电子态及其离解极限,采用B3P86方法,在CC-PVTZ水平上,优化出HOCl基态分子稳定构型为单重态的Cs构型,其平衡核间距RH-O=0.0965nm、RCl-O=0.1692nm、 HOCl=102.9°,能量为-536.5061 a.u..同时计算出基态的简正振动频率:对称伸缩振动频率 (A )=769.6cm-1,弯曲振动频率 (A )=1273.3 cm-1和反对称伸缩振动频率 (A )= 3805.8cm-1.在此基础上,使用多体项展式理论方法,导出了基态HOCl分子的全空间解析势能函数,该势能函数准确再现了HOCl (Cs)平衡结构.  相似文献   

10.
应用群论及原子分子反应静力学方法推导了OCS分子的电子态及其离解极限,采用B3P86方法,在CC-PVTZ水平上,优化出OCS基态分子稳定构型为三重态的Cs构型,其平衡核间距RC-S=0.1768nm、RC-O=0.1179nm、∠OCS=122.9,°能量为-512.0405 a.u.。同时计算出基态的简正振动频率:对称伸缩振动频率ν(A′)=354.5cm-1,弯曲振动频率ν(A′)=633.5cm-1和反对称伸缩振动频率ν(A′)=1792.8cm-1。在此基础上,使用多体项展式理论方法,导出了基态OCS分子的全空间解析势能函数,该势能函数准确再现了OCS(Cs)平衡结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号