首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以PFC boost电路为例,近似认为电感电流线性变化,得出了临界导电模式PFC电路的输入电流和输入电压的关系,基于能量守恒原理进一步得出输出电压与输入电压和开关导通时间的关系,讨论了变换器损耗的影响。仿真和实验结果验证了理论分析的正确性。  相似文献   

2.
提出了一种新的零电压转换(ZVT)软开关PWM转换器,给出了boost转换器的电路,详细分析了它的工作原理,并给出了主要变量的波形。  相似文献   

3.
提出了一种计及动作时间的开关模型,即处在导通过程的开关用电压源表示,处在断开过程的开关用电流源表示,开关的导通电阻可以为零,断开电阻可以为无限大.利用这种模型,可用结点法对电路进行时域分析,避免了由理想开关模型引起的不连续初始值求解的困难,保留了理想开关模型的优点,与计及开关通断电阻的模型相比,极大地减少了计算时间,实例表明,这种模型具有编程容易、仿真时间短的优点,适用于开关网络的建模和仿真。  相似文献   

4.
朱建刚 《科技信息》2012,(33):99-100
设计了谷值电流模式BUCK型LED恒流驱动器架构,采用双电容充放电的振荡结构分别实现开关管导通计时和最小关断计时,所设计的谷值电流控制器固有的振荡特性避免了振荡器的使用,减少电路实现的成本和复杂度。分析了系统的控制时序,引入前馈机制来调节开关导通占空比,大大减小输入电压变化对开关频率的影响。采用0.61μm30VBCD工艺利用HSPICE仿真验证了所提出的电路结构,仿真结果符合理论推导。  相似文献   

5.
文章研究了适用于PWM DC/DC变换器的无源无损缓冲电路单元,仅通过在变换器中附加一些无源元件实现了开关管的零电流导通和零电压关断,并将缓冲元件的能量回馈给变换器的输入输出端,达到了无损的效果。该缓冲电路单元结构简单,控制方便,并能在软开关的情况下保持开关管的最小电压应力。  相似文献   

6.
全桥移相式变换器的4个开关可以在零电压下导通,而保留脉宽调制(PWM)变换器易于控制、开关应力低的特点。作者对全桥零电压开关(ZVS)PWM变换器(软开关PWM变换器)进行了小信号分析,建立了最优控制模型,给出了变换器幅频与相频特性的计算结果,以及全桥(FB)ZVS-PWM开关稳压电源动态补偿网络参数最优化的计算举例。结果表明,应用最优控制方法可使这类电源的瞬态性能指标有显著改进。  相似文献   

7.
提出了理想二极管,压控开关,流控开关等的一单一方程描述,将开关视为一个导通电阻为零,切断电阻为无限大的非线性电阻,由于用一个统一的方程描述开关的电压电流关系,因而可在一个拓扑下分析开关型电路,在数值仿真时,不需要编制开关状态判断与初始值求解的专门程序,理论与实际分析均表明,这种开关模型能用于电力电子电路的数值计算,采取后向差分法,也可分析含有冲激量的模拟集成电路。  相似文献   

8.
为实现一种结构简单,高效、高频、低电压应力,控制简单的软开关升压变换器,提出一种零电流软开关脉冲频率调制(pulse frequency modulation,PFM)变换器,并以其在boost变换器的应用为例分析了其工作原理、软开关实现条件以及该电路的设计方法.仿真和实验结果表明:该变换器在较宽的输出电压、输入电压、...  相似文献   

9.
用等效小参量法对开环PWM型DCDC开关变换器进行了分析,得到了一种适合于这类电路的统一算法.通过设立一个表明非线性函数性质的标志,进行简单的矩阵运算,求得变换器的输出直流值和纹波解析解.仿真结果证实了这种算法的正确性和通用性.  相似文献   

10.
《贵州科学》2021,39(5)
提出了一种用于小型无线LED照明系统的功率调节系统。无线LED照明系统的主电路是基于单开关的E类放大器,通过调节E类放大器的旁路电容从而实现功率调节。无线LED照明系统主电路工作在E类放大器的次优化工作区间,该工作区间可以确保主电路的开关元件始终工作在零电压开关模式。给出了描述系统特性和确定软开关条件的方程,仿真和实验结果验证了提出的功率控制方法可以有效的调节系统的输出功率,并保证了零电压开关条件得到满足。  相似文献   

11.
一种新型单级隔离式全桥软开关boost变换器   总被引:2,自引:0,他引:2  
提出了一种新型隔离式软开关全桥boost变换器,软开关电路能有效地对桥臂上的电压尖峰进行箝位,并将漏感能量传递到负载端,可以实现所有开关管的零电压关断以及辅助开关管的零电流开通,提高了效率,最后给出了仿真结果.  相似文献   

12.
分析了阶跃恢复二极管(SRD)的电特性,提出了一种SRD模型.该模型将SRD等效为一个非线性电容和非线性电阻的并联,为了精确获得非线性电容和非线性电容电压曲线,首先测得若干离散电压点的值,采用多项式分段拟合非线性电容和非线性电阻随电压变化的曲线,利用此模型对冲激脉冲产生电路进行了仿真.经测试脉冲宽度为200 ps,幅度为3.3 V,与仿真结果较吻合,验证了该模型的正确性.  相似文献   

13.
针对开关磁阻电机电感的非线性问题,提出了一种开关磁阻电机非线性电感解析计算模型,并在此基础上完成了电磁转矩的解析计算。运用分布式等效磁路法并考虑铁芯磁饱和的影响,通过分别确定各条磁路中气隙和铁芯的等效长度及磁导率,建立了含电机参数的非线性电感解析模型,并通过电感的有限元仿真结果验证了解析模型的准确性。在利用该电感解析模型求解得到磁链曲线族的基础上,使用能量法对电磁转矩进行了解析计算,并将电磁转矩的解析结果与有限元仿真结果进行了对比,结果表明:建立的非线性电感解析模型能够准确地预测出电机的动态电感,相对误差在9%以内,电磁转矩峰值处误差在6%以内,提出的电感解析模型能够获得较高精度的电感和转矩解析结果。  相似文献   

14.
本文讨论了用基本开关电容(SC)电路的Z域传输导纳,建立有源开关电容滤波器(SCF)等效Z域模型的方法。归纳出直接由有源SCF画出信号流图的规则。基于获得的信号流图,用Mason公式分析了几个实例。结果表明,用本文提出的信号流图法,可非常方便地求得有源SCF的传递特性。  相似文献   

15.
针对无线电能传输谐振电路的失谐问题,提出了一种"固定电容+开关管"的调谐新方法。通过开关管调节电容的导通与关断时间,等效形成一个可变电容,据此对失谐电路进行调谐,保持谐振电路在原有谐振频率下谐振。给出了开关电容调谐原理,推导了控制角与调谐范围之间的关系,并通过仿真及实验验证了该方法的有效性。结果表明,开关电容调谐方法具有调节范围宽、控制方便、易于实施的特点,是无线电能传输调谐技术的一种新方法,可用于人体植入式微电子装置的无线供能中。  相似文献   

16.
本文将电路理论中的对偶变换原理扩展应用于开关变换器电路的对偶分析。文中导出了动态导通比参数、半导体开关管拓扑以及变压器理想模型的对偶形式。应用这些对偶关系,可以较简便地直接将开关变换器及其小信号等效电路模型按照对偶原理分析,求得它们的对偶拓扑。  相似文献   

17.
级联有源滤波器拓扑结构简洁,可不经变压器直接接入中压配网,但级联单元的数目大,控制繁杂,并且直流侧电容电压存在不均衡问题。该文提出一种中压级联有源滤波器分层控制策略,分离系统上层主功能控制和下层单元控制,扩大主控制计算的时间裕度,实现较复杂的控制算法,并保证系统动态响应速度;同时提出一种硬件辅助箝位电路及其软开关控制策略,实现直流侧电容能量交换与均压控制,并且通过相位与模式控制使辅助回路开关零电压(zerovoltage switching,ZVS)运行,提高辅助回路效率,降低开关噪声。仿真和实验研究证明:分层控制策略与软开关辅助箝位措施是实现中压级联有源滤波器的有效方法。  相似文献   

18.
为了在不另设辅助电路的情况下最大限度地减小软开关电路中的环流,本文提出了一种能降低导通损耗的新的零电压开关(ZVS)和零电流开关(ZCS)的脉宽调制式(PWM)变流器,这种交叉式双开关正向软开关变流器具有元器件少、效率高、功率密度大以及成本较低等优点,适合于大功率应用场合。阐述了其工作原理且作了稳态分析,构建了一个500W、100kHz的IGBT实验电路证实了该电路的性能。  相似文献   

19.
该文提出了一种具有软开关能力的图腾杆式无桥交错Boost功率因数校正器(power factor correction, PFC).与传统的交错图腾杆无桥升压PFC变换器相比,在2个PFC变换器单元之间增加了一个电感,利用增加电感的能量,使所有开关实现零电压开关.此外,通过在2个PFC变换器单元之间应用移相控制,使得变换器可以将所加电感上的电流大小控制为一个最优值.因此,该变换器可以实现零电压工作,同时最大限度地降低附加电感的导通损耗和铁心损耗.通过Matlab Simulink仿真的结果表明:该变换器可以达到较高的效率,验证了该变换器的可行性.  相似文献   

20.
非耦合开关电容Cuk DC-DC变换器   总被引:1,自引:0,他引:1  
提出一种非耦合开关电容Cuk DC-DC变换器(SC Cuk DC-DC变换器(。与普通Cuk DC-DC变换器相比,该变换器的输入输出电感可工作在非耦合状态。分析表明,即使开关工作在较大的导通比,该电路不需变压器也可实现大的输入输出电压比;当输入电感工作在DCM,输出电感工作在CCM时,该变换器可等效为一个Boost变换器和一个Buck变换器级联;开关电容网络的阶数即为普通Cuk DC-DC变换  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号