首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究了正交异性复合材料板三裂纹的平面问题。通过复合材料断裂中的力学模型,将此问题归结为一类偏微分方程的边值问题,构造保角映射,将均匀分布三裂纹映射为复平面上的平行周期裂纹,通过引入适当的westergaard应力函数,采用复变函数方法和待定系数法对复合材料Ⅰ型平行周期裂纹尖端的应力场进行了力学分析。最后再利用该保角映射的逆变换,将平行周期裂纹尖端的应力场变换到原均匀分布三裂纹的应力场,得到了远场受均匀分布载荷作用下的应力场和位移场的解析解。研究结果为结构和材料的强度设计提供了有意义的参考。  相似文献   

2.
研究圆柱型各向同性双材料在径向应力条件下的界面裂纹尖端场的力学问题。利用弧形界面裂纹尖端的控制方程和材料边界条件,将力学问题化为偏微分方程组边值问题,建立了数学模型。运用分离变量法,设定特殊含待定系数的位移函数,借助边界条件和待定系数法,得到满足边界的偏微分方程组的解。利用应力函数与位移、应力的关系式,计算得到级数形式的圆柱型复合材料界面裂纹尖端附近的应力和位移的解析表达式。  相似文献   

3.
研究了含中心裂纹的无限大横观各向同性压电材料薄板的平面问题。利用压电材料平面应变问题的本构方程,通过引入两个适当的函数,将力学问题转化为偏微分方程组边值问题。利用复变函数方法和待定系数法,选取适当的应力函数,借助不可导通边界条件,确定未知系数,得到满足偏微分方程组边值问题的解。推导得到裂纹尖端附近的应力强度因子、应力场、电位移场和位移场、电势场的计算公式。  相似文献   

4.
通过构造适当的Westergaard应力函数,采用复变方法和待定系数法对正交各向异性纤维增强复合材料板的周期张开型平行裂纹尖端附近的应力场进行力学分析.在无穷远处对称拉伸载荷的作用下,利用双曲函数的周期性,修正常规的应力强度因子定义,得到用n表示的周期张开型裂纹尖端的应力强度因子及用修正的应力强度因子表示的周期张开型裂纹尖端附近的应力场的显式解析表达式.此外,应力场的大小与材料弹性常数有关,这是正交各向异性材料不同于各向同性材料的特征.由于裂纹的周期分布,应力强度因子的大小取决于形状因子.结果表明,当裂纹间距趋于无限大时,退化为含单个中心裂纹正交异性纤维增强复合材料板的结果,并且所得的解析解能更好地体现裂纹的周期性.  相似文献   

5.
对各向异性复合材料板的周期性Ⅱ型裂纹尖端应力场进行了有关的力学分析,通过求解一类线性偏微分方程的边值问题,引入Westergaard应力函数、采用复变函数方法及待定系数法,给出在无穷远处受对称载荷τ作用下,周期性Ⅱ型裂纹尖端的应力强度因子,推出了各向异性复合材料板周期性Ⅱ型裂纹尖端附近应力场的理论计算公式。  相似文献   

6.
研究了反平面剪切载荷作用下圆柱型功能梯度双材料界面周期裂纹尖端场的力学问题。建立圆柱型功能梯度双材料的控制方程和弧形界面周期裂纹边界条件,将力学问题转变为偏微分方程组的边值问题。利用分离变量和待定系数的方法,设定一个具有待定系数的特殊位移函数,借助于边界条件,获得满足边界条件的偏微分方程的解。引入位错密度函数以及奇异积分方程,从而推导出应力强度因子的计算公式。  相似文献   

7.
利用叠加原理,将各向异性纤维复合材料单层板混合型裂纹尖端的力学模型-偏微分方程的边值问题化为Ⅰ型和Ⅱ型两个边值问题求解,应用复变函数公式,得到裂纹尖端的应力场和位移场的复形式,将其代入J-积分的一般公式,推出了各向异性纤维复合材料单层板混合型裂纹尖端J-积分的复形式--复变函数积分的实部,再利用柯西-古萨基本定理证明了该J-积分的路径无关性,进而利用柯西积分公式得到它的具体计算公式.  相似文献   

8.
研究了各向异性与正交异性双材料Ⅲ型界面裂纹问题.通过构造新的应力函数,采用复合材料断裂复变方法,求解一类偏微分方程组边值问题,推导出各向异性与正交异性双材料Ⅲ型界面裂纹尖端附近的应力场、位移场以及应力强度因子的表达式。结果显示裂纹尖端附近应力具有r-1/2的奇异性,但没有振荡性;通过算例得到应力随极径r变化的规律;分析当角α=0时,获得了正交异性双材料Ⅲ型界面裂纹的应力场、位移场与文献一致,验证了结果的正确性。  相似文献   

9.
研究圆柱型功能梯度双材料在轴向剪切力条件下的界面裂纹尖端场的力学问题。利用弧形界面裂纹尖端的控制方程和材料边界条件,将力学问题转换成偏微分方程组的边值问题,建立数学模型。运用分离变量法,设定特殊包含待定系数的位移函数,借助边界条件和待定系数法,推导出奇异积分方程,从而得到满足边界的偏微分方程组的解。利用位移函数与应力、应变关系式,计算得到级数形式的圆柱型双材料界面裂纹尖端附近的应力以及位移的表达式。  相似文献   

10.
通过构造势函数,利用半逆解法研究了一维正方准晶平行于准周期方向的共线周期性裂纹问题,给出了该问题的应力和应力强度因子的解析解.当裂纹间距趋于无穷时,共线周期性裂纹退化为Griffith裂纹,得到一维正方准晶平行于准周期方向裂纹问题的结果.  相似文献   

11.
研究了各向异性双材料Ⅲ型界面裂纹问题.通过构造新的位移函数,采用复合材料断裂复变方法,求解了一类偏微分方程组的边值问题,推导出各向异性双材料Ⅲ型界面裂纹尖端附近的应力场、位移场以及应力强度因子的表达式.结果显示,裂纹尖端附近应力具有r-1/2的奇异性,但没有振荡性,通过算例得到应力随极径r变化的规律.当坐标轴与各向异性材料的纤维主方向重合时,即夹角φj=0,(j=1,2),获得了正交异性双材料Ⅲ1型界面裂纹的应力场、位移场与文献一致,验证了结果的正确性.  相似文献   

12.
基于三维弹性理论和压电理论 ,研究了功能梯度压电板条中的电渗透型运动裂纹问题 .利用Fourier积分变换方法 ,将混合边值问题化为对偶积分方程 ,并进一步归结为易于数值求解的第二类Fredholm积分方程 .通过渐近分析 ,获得裂纹尖端应力、应变、电位移和电场的解析解 ,给出裂纹尖端场各个变量的角分布函数 ,并求得裂纹尖端场的强度因子 .结果表明 ,对于电渗透型裂纹 ,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有 - 1/ 2阶的奇异性 ,而且与固定于裂纹尖端的运动坐标有关 ;当裂纹运动速度增大时 ,裂纹扩展的方向会偏离裂纹面 .  相似文献   

13.
分析了正交异性压电双材料在反平面无穷远处机械载荷和面内电载荷作用下的反平面界面中心裂纹,通过运用复合函数法和待定系数法,使双层板反平面界面中心裂纹尖端断裂转换为求解偏微分方程组的边值问题,求解边值偏微分方程组,在裂纹尖端邻近,对相应电位移强度因子和应力强度因子进行定义,从而得到应力场、电位移场、应力强度因子、电位移强度因子表达式。结果表明应力总是促进裂纹扩展,应力强度因子、电位移强度因子和能量释放率与力电载荷、裂纹长度有关。数值研究了机械能应变释放率与材料参数的差异、外加载荷、裂纹长度之间的关系。  相似文献   

14.
基于线性压电理论,采用电绝缘边界条件,对压电板条中的张开型(Ⅰ型)裂纹问题进行了求解.利用Fourier变换将裂纹面的混合边值问题化为对偶积分方程,并进一步归结为易于求解的第二类Fredholm积分方程组.求得了裂纹尖端场的强度因子,分析了材料常数和几何尺寸对应力强度因子的影响.结果表明,可以通过适当调整材料和几何参数来减小应力强度因子的幅值。  相似文献   

15.
带裂纹的弹性半平面接触问题   总被引:1,自引:0,他引:1  
平面弹性基本问题中的接触问题与断裂问题是工程实际中的重要问题。研究工程实际中一类带任意裂纹的弹性半平面接触问题。根据平面弹性复变方法,将问题归结为求解一类解析函数边值问题。通过适当的函数分解和消元方法,将问题减化为一类有求解程序的一般Riemann边值问题,从而得到弹性体应力函数封闭形式的解,并导出了裂纹端点的应力强度因子与压头下方边界压力分布情况。  相似文献   

16.
研究含界面裂纹的横观各向同性双压电材料板在反平面剪切载荷和平面内电位移共同作用下的裂纹尖端场问题。利用复变函数方法,引入含待定实系数的应力函数,借助边界条件和待定系数法,建立非齐次线性方程组。求解得到满足控制方程和边界条件的应力函数,推导得到双压电材料板Ⅲ型界面裂纹尖端的应力场、电位移场和应力强度因子、电位移强度因子的表达式。  相似文献   

17.
在弯扭载荷作用下,研究线弹性各向异性纤维复合材料板裂纹尖端附近的应力场、位移场。利用复变函数方法,选取带参数的挠度函数作为控制方程的解,借助边界条件,确定未知参数,得到满足偏微分方程边值问题的解,从而推出裂纹尖端附近的应力和位移计算公式。所得到的公式在有关的断裂分析中有重要的参考作用。  相似文献   

18.
利用复变方法,讨论了一类含界面裂缝的焊接问题.借助解析函数边值问题和奇异积分方程的基本理论,得到了弹性材料体内应力分布的封闭形式解,并导出了裂缝尖端应力强度因子的解析表达式.  相似文献   

19.
利用复变函数法,通过引入适当的保角变换,研究了裂纹面受剪切作用下无限大点群6一维六方准晶中幂函数型曲线裂纹的断裂行为,给出了曲线型裂纹在裂纹尖端处应力强度因子公式,得到了裂纹尖端处应力强度因子的解析解.该解析解在幂函数的幂次为零时,可还原为无限大点群6一维六方准晶中Griffith裂纹的结果,证明了其合理性.基于该解析解,得到了一些重要结论.  相似文献   

20.
贾红刚  李俊林 《科技信息》2010,(21):207-208
利用复变函数的方法,构造了适当的保角映射,研究了带k个期径向裂纹的圆形孔口的平面弹性问题.得到了裂纹尖端I型裂纹问题应力强度因子的解析解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号