首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
以3, 3-双叠氮甲基氧杂环丁烷-四氢呋喃共聚醚(PBT)为聚醚聚氨酯的软段、甲苯-2,4-二异氰酸酯(TDI)为固化剂、一缩二乙二醇(DEG)为扩链剂、三羟甲基丙烷(TMP)为交联剂,利用二步法制备了不同活泼氢组分的PBT聚醚聚氨酯。采用傅里叶变换红外光谱(FT-IR)仪、差示扫描量热(DSC)仪、电子万能试验机及溶胀率测试仪,对PBT/TDI、PBT/TDI/DEG、PBT/TDI/TMP/和PBT/TDI/DEG/TMP体系进行了固化反应动力学及力学性能的研究。结果表明:PBT/TDI、PBT/TDI/DEG、PBT/TDI/TMP/和PBT/TDI/DEG/TMP体系的固化反应均为二级反应,活化能分别为135.984、165.573、164.933、164.292 kJ/mol。加入DEG可显著提高黏合剂基体的断裂伸长率,但拉伸强度下降;加入TMP能提高黏合剂基体的拉伸强度,但断裂伸长率下降;同时加入DEG和TMP的黏合剂基体拉伸强度提高,断裂伸长率有所下降。DEG和TMP能不同程度地提高固化体系的交联密度。  相似文献   

2.
用4,4′-二苯基甲烷二异氰酸酯(MDI)和聚四氢呋喃聚醚(PTMG)为原料合成聚氨酯(PU)预聚体,以三官能度聚醚多元醇(330N),三羟基甲基丙烷(TMP)和1,4-丁二醇(BDO)为原料制备PU弹性体。讨论了聚醚多元醇与醇类扩链剂并用和醇类扩链交联剂并用对PU弹性体性能的影响。结果表明,随着330N与BDO羟基数比增大,软段玻璃化转变温度(Tgs)随之降低、拉伸强度和硬度下降、拉断伸长率增加;而随着TMP与BDO羟基数比增加,Tgs随之升高、拉伸强度与拉断伸长率下降、硬度保持不变。  相似文献   

3.
酚醛树脂对NR硫化胶性能的影响   总被引:2,自引:0,他引:2  
详细讨论了酚醛树脂/六亚甲基四胺用量对天然橡胶硫化胶物理机械性能及动态力学性能的影响,用电子扫描电镜(SEM)研究了硫化胶磨耗表面状态。结果表明,随酚醛树脂用量增加,硫化胶硬度,100%定伸应力,动态弹性模量增加,而扯断伸长率,撕裂强度及动态力学损耗(tanδ)下降。当酚醛树脂用量为5份左右时,拉伸强度,300%定伸应力,耐磨性及耐老化性能最优,SEM照片上磨纹最细。  相似文献   

4.
通过TDI三聚反应生成异氰脲酸酯(IS)环,将其引入到聚氨酯弹性体(PUE)的大分子链中,考察其对PUE的热稳定性和力学性能的影响。DSC测试和TG测试结果表明:经TDI三聚体改性后,PUE的耐热性能提高;DMA测试表明:改性的PUE的内耗峰比未改性的宽,并且内耗峰值所对应的温度提高(由10℃提高到65℃);力学性能测试结果表明:PUE的硬度、拉伸强度和扯断伸长率随TDI三聚体含量的增加有所下降,但撕裂强度提高(TDI三聚体质量分数20%时,PUE的撕裂强度比未改性的提高了14%)。  相似文献   

5.
研究了在过氧化物硫化丁苯橡胶(SBR)中,过氧化二异丙苯(DCP)用量和甲基丙烯酸镁(MgMAA)2)用量对SBR力学性能,动态力学性能和交联结构的影响,结果表明,DCP用量在0.2-1.0份时对硫化胶的抗张强度影响不大,但是大于未硫化橡胶的强度;DCP用量增加后硫化胶的拉伸模量和硬度都有较大的提高,扯断永久变形逐渐减小,储能模量(′)逐渐增大,损耗角正切(tanδ)则逐渐减小,DCP用量一定时,随着Mg(MAA)2用量的增加,硫化胶的强度,模量,硬度,扯断伸长率,扯断永久变形和E′都有较大幅度的提高,tanδ值在Mg(MAA)2用量少于40份时呈逐渐下降趋势,在Mg(MAA)2用量的40份时,可以获得同时具有高强度,高模量,高伸长,高硬度等优良性能的SBR硫化胶。  相似文献   

6.
以聚己内酯(PCL)为软段,二苯基甲烷二异氰酸酯(MDI-100)和1,4-丁二醇(BDO)为硬段,通过分子结构设计制备具有优良动态力学性能和低温性能的浇注型聚氨酯弹性体,并将聚氨酯弹性体用于制备免充气轮胎。研究了预聚体NCO(异氰酸酯基)质量分数和软段分子量对弹性体动态力学性能和低温性能的影响。结果表明:当预聚体NCO质量分数为6.0%,分子量1 000和2 000的PCL质量比为15∶10时,合成的聚氨酯弹性体综合性能最佳,此弹性体的玻璃化转变温度为-13.25℃,常温下硬度为85.0 A,拉伸强度为49.21±2.39 MPa,断裂伸长率为(679.26±17.16)%,循环拉伸弹力恢复率为89.96%;动态力学分析结果显示此弹性体的储能模量为17.5 MPa,损耗因子tanδ仅为0.167(25℃)。将该配方制备的弹性体用于制备免充气轮胎,所制备的免充气轮胎通过了轮胎耐久性测试,满足技术要求。  相似文献   

7.
研究了室温固化聚氨酯弹性体的合成工艺,探讨了多元醇低聚物、分子量、异氰酸根含量和扩链系数对聚氨酯弹性体力学性能的影响.使用聚酯多元醇CMA-24和TDI100合成聚氨酯预聚体,异氰酸根(NCO)含量为3.6%,扩链系数为0.97时,可以得到拉伸强度为38MPa,断裂伸长率为480%的聚氨酯弹性体.  相似文献   

8.
以三羟甲基丙烷(TMP)为交联剂,在较低交联参数下制得力学性能改善的聚叠氮缩水甘油醚(GAP)聚氨酯弹性体。采用傅里叶变换红外光谱(FT-IR)和X-射线衍射仪(WXRD)表征制备的GAP弹性体结构,动态力学热分析(DMA)、万能材料试验机、邵氏硬度仪和热重(TG)分析研究其高、低温力学及热分解特性。结果表明,该GAP弹性体具有叠氮型聚醚聚氨酯弹性体的结构特征,热稳定性较好。GAP弹性体试样经交联后,其常温力学强度显著提高,高温蠕变程度显著降低,但同时储能模量和玻璃化转变温度T_g略升高。其中GAP-T0.06弹性体试样的综合力学性能较好,其抗拉强度可达27.1 MPa,断裂伸长率为750%,T_g为-16.0℃,邵尔-A硬度为72.1 HA。  相似文献   

9.
人工气候老化对热塑性弹性体SBS结构与性能的影响   总被引:1,自引:0,他引:1  
利用紫外老化试验箱,对热塑性弹性体SBS进行人工加速老化实验,采用色度计、显微镜、傅里叶变换红外光谱仪和力学试验机研究人工气候老化对SBS的颜色、表面形貌、显微结构和力学性能的影响.结果表明:随着老化时间的延长,SBS表面颜色逐渐变黄,裂纹逐渐变密,有羰基>CO生成,试样的断裂强度、扯断伸长率和撕裂强度先迅速降低,然后趋于稳定;而邵氏硬度随老化时间逐渐增大;其力学性能向硬而脆的方向发展;扯断伸长率变化幅度是检测降解变化的最明显指标.  相似文献   

10.
采用流延成型法以乙二醛作为交联剂成功制备了明胶/聚乙烯醇复合膜,考察了交联剂浓度、交联时间、反应温度、反应pH等对共混膜力学性能的影响以及交联剂用量对复合膜溶解性能的影响。研究结果表明:在反应温度40℃左右,复合膜具有较高的拉伸强度,而断裂伸长率随着温度的升高呈下降的趋势;随着乙二醛用量的增加,复合膜的拉伸强度呈现先增加而后逐渐降低的趋势,而断裂伸长率呈现逐渐降低的趋势;随着交联时间的增加,复合膜的拉伸强度先增加而后逐渐降低;在pH值为3时,复合膜具有较大的拉伸强度和断裂伸长率,而pH值为4和5时,复合膜的拉伸强度和断裂伸长率基本上都处于最低值。  相似文献   

11.
为改善聚叠氮缩水甘油醚(GAP)的性能,选用聚乙二醇(PEG),以三羟甲基丙烷为交联剂,异佛尔酮二异氰酸酯(IPDI)为固化剂,制备出GAP/PEG/TMP/IPDI双软段含能黏合剂胶片,并采用FTIR,DSC,XRD等方法进行表征.GAP胶片中引入聚乙二醇,拉伸强度提高到3.11MPa,其延伸率可达475%.随交联程度的增大,黏合剂胶片中软段的玻璃化转变温度先增大后降低,DSC和XRD表明此类黏合剂胶片为非晶聚合物,热分解温度为183℃.  相似文献   

12.
选用端叠氮基聚四氢呋喃环氧乙烷共聚醚(AzTPET)或端叠氮基二甘醇(KL-1)作为扩链剂与端炔基聚四氢呋喃环氧乙烷共聚醚反应制备聚四氢呋喃环氧乙烷共聚醚聚三唑弹性体(PTPET). 反应体系黏度稳定下,分析扩链剂对PTPET弹性体的力学性能和交联网络的影响. 力学结果表明:在20 ℃时,未扩链的PTPET延伸率为112%,经40%(叠氮官能团比,下同)的AzTPET扩链后可提高到300%;在60 ℃时,延伸率由70.1%扩链后可达153%. 经50%的KL-1扩链后样品在20 ℃时延伸率为200%,60 ℃下为120%. 两种扩链剂制备样品的延伸率均大幅提高,但前者强度有所降低. 在?40 ℃下,两扩链剂制备弹性体的拉伸强度均随扩链剂用量的增加而升高. KL-1扩链的PTPET弹性体表观密度高于AzTPET. 综合分析,两种扩链剂均能显著提高PTPET的断裂延伸率,但扩链剂KL-1在PTPET中的力学强度优于AzTPET.   相似文献   

13.
制备了不同硬段含量(18%~34%)的快速固化聚氨酯修补胶(PRA),考察了硬段含量对PRA的固化时间、力学性能、耐热性能、耐水性能和耐磨性能的影响。结果表明:当硬段含量由18%增加到34%时,PRA的氢键化程度增大,固化速度加快,拉伸强度、撕裂强度和剪切强度增大,断裂伸长率减小;随着硬段含量的增加,总体上PRA的起始分解温度提高,硬段热失重率增大,软段热失重率减小;硬段含量对PRA吸水率的影响很小,浸水7d后PRA的力学性能与浸水前相比有所下降;随着硬段含量的增加,PRA的磨耗体积先减小后增大,在硬段含量为26%和30%时磨耗体积较小;硬段含量为30%的PRA的综合性能较好,其固化时间为50s,拉伸强度为19.94MPa,断裂伸长率为460%,撕裂强度为70.72kN/m,剪切强度为1.87MPa,阿克隆磨耗体积为47mm3。  相似文献   

14.
在聚乳酸(PLA)体系中添加无机抗菌剂纳米二氧化钛银交换体(Ag+/TiO2),研究纳米Ag+/TiO2含量对PLA薄膜力学性能、透氧透湿性能及抗菌性能的影响.结果表明:随着纳米Ag+/TiO2含量的增加,所制备的PLA薄膜的拉伸强度先增大后减小,而断裂伸长率逐渐下降;在含量为1份时,薄膜的拉伸强度为38.8,MPa、断裂伸长率为263.5%、透湿系数为3.8×10-13g.cm/(cm2.s.Pa)、透氧系数为38×10-15cm3.cm/(cm2.s.Pa),薄膜对大肠杆菌、金黄色葡萄球菌、霉菌的抗菌率达到95%以上.  相似文献   

15.
用硫化改性剂和废轮胎胶粉制备了全胶粉弹性体.讨论了改性剂用量、炭黑用量、加工工艺及加工助剂对全胶粉弹性体物理机械性能的影响.实验发现硫化改性剂用量为2份;炭黑用量15份;加工油用量小于2份,可以得到较好性能的全胶粉弹性体,拉伸强度达7.9 MPa,断裂伸长率为315%,超过了再生胶的国标(拉伸强度6 MPa).同时对全胶粉弹性体的微观形貌及断裂行为也进行了讨论.  相似文献   

16.
在微观力学行为分析的基础上,对90W合金宏观力学性能及其与微观结构因素(粘结相力学参数)之间的关系进行了计算机数值模拟研究.结果表明:钨合金性能与粘结相力学参数密切相关.随着粘结相弹性模量增加,合金的抗拉强度增加,但延伸率降低.当粘结相屈服强度800MPa时,合金抗拉强度随粘结相屈服强度增加而增大,在粘结相屈服度为800MPa时达到最大值.随粘结相抗拉强度增加,合金抗拉强度和延伸率均呈近似线性规律增加.合金延伸率对粘结相应变硬化模量极为敏感.  相似文献   

17.
POE-g-MAH增韧改性PA6的力学性能   总被引:2,自引:0,他引:2  
研究了接枝马来酸酐的乙烯-辛烯共聚物(POE-g-MAH)对增韧改性尼龙6(PA6)力学性能的影响结果表明:随着POE-g-MAH含量的增加,PA6的拉伸模量和强度及弯曲模量和强度均有所下降,但冲出强度和断裂仲长率均显著提高;增韧改性后PA6断面形貌明显成韧性断裂,且其熔体流动速率随POE-g-MAH含量增加而下降;当POE-g-MAH质量分数为25%时,增韧PA6的综合性能最佳,可用作PA柔性管材专用料。  相似文献   

18.
等温自由锻温度对7085铝合金组织与性能的影响   总被引:1,自引:0,他引:1  
通过金相组织观察、扫描电镜分析和室温拉伸力学性能及剥落腐蚀实验,分析探讨等温自由锻温度对7085铝合金显微组织、力学性能和剥落腐蚀的影响.研究结果表明:在370℃和400℃等温自由锻时,合金发生严重再结晶,强度较低,伸长率稍高,剥蚀抗力较差;在420℃锻造时,合金出现大量细小且分布均匀的亚晶粒,抗拉强度、屈服强度、伸长率和剥蚀抗力均较好,分别达到533.2 MPa,495 MPa,13.3%和EA.在450℃锻造时,该合金的晶粒开始长大,强度下降,伸长率稍有升高,剥蚀抗力较差.综合考虑显微组织、强度、塑性和剥落腐蚀等因素,确定420℃为合金等温自由锻最佳锻造温度.  相似文献   

19.
为使TG固化剂石灰土能更好的应用于东北等季冻区二级及二级以下公路的底基层,通过室内试验研究得到TG固化剂石灰土的合理配比,以代表强度与变形特性的典型试验为依据,对TG固化剂石灰土的变形与力学特性受冻融作用的影响规律进行详细探究。研究结果表明:力学特性方面,经历冻融循环作用以后,TG固化剂石灰土的无侧限抗压强度降低,随着冻融循环次数的增加最大损失率不超过50%;抗压回弹模量随含水率增加而减小,随压实度增大而增大,在经历冻融循环作用后抗压回弹模量降低。变形特性方面,经历冻融循环作用后干缩性能有提高,且压实度越小,干缩应变越大。冻融循环作用对TG固化剂石灰土的强度与变形特性有双重效应。  相似文献   

20.
研究了轧后中温缓慢冷却与中温等温两种不同的热机械控制工艺( thermomechanical control process, TMCP)对硅锰系贝氏体钢的组织与性能的影响。通过拉伸试验机测试试验钢的力学性能,利用扫描电子显微镜、电子背散射衍射等分析手段对试验钢进行显微组织结构分析,并利用X射线衍射测定残余奥氏体含量。结果表明:随着轧后连续缓慢冷却开始温度的升高,贝氏体钢的抗拉强度、硬度及拉伸应变硬化指数n值有所提高,伸长率和冲击韧性降低,屈强比先降低后升高。随着轧后等温时间的延长,贝氏体钢的抗拉强度与屈强比先降低后升高,伸长率及冲击韧性先升高后降低。相对于等温制度,连续缓慢冷却可得到更好的综合力学性能,强塑积明显高于前者,伸长率比前者高20%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号