首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
为了提高热轧带钢厚度精度,针对以快速傅立叶变换为基础的轧辊偏心识别方法的固有缺陷,利用在小波变换下奇异信号和随机噪声在多尺度空间中的模极大值传递特性的不同,提出一种基于小波变换识别轧辊偏心的新方法,用于分析轧制力信号和厚差信号,并将信号从随机噪声中有效分离出,实现对轧辊偏心的动态补偿·仿真研究表明,小波变换补偿轧辊偏心优于快速傅立叶和其改进算法,可使轧辊偏心引起的厚度波动减少90%·设计基于小波分析的轧辊偏心补偿控制的方法,使补偿控制系统更有效地工作,对外界环境干扰具有很好的适应性和对偏心信号实行动态实时的补偿控制·  相似文献   

2.
基于重复控制和PID控制方法,提出了新型复合控制方法,在稳态时采用重复控制,在非周期扰动时采用PID控制,试验结果表明,该控制方法在具有高质量的稳态波形的同时,对非周期扰动也具有很快的响应速度,使正弦波逆变电源系统获得了良好的稳态和动态特性。  相似文献   

3.
针对轧辊偏心信号时域频率高且频率存在变化,常规方法难以有效补偿的问题,提出了一种新的重复控制补偿方法。首先依据阶比分析原理,把板厚反馈信号转换为角域信号,使包含在板厚反馈信号中的偏心扰动具有严格的周期性。然后针对板带轧制及轧辊偏心特点,并通过采样控制克服板厚信号大滞后问题。将该系统嵌入到AGC(自动板厚控制)系统之中,以消除轧辊偏心对出口板厚的影响。在SIMULINK环境下的仿真表明,该方法可以在支撑辊转动50转内将轧辊偏心造成的厚差波动降低80%。  相似文献   

4.
大功率单碟式太阳能聚光器跟踪控制系统研究及实现   总被引:1,自引:0,他引:1  
综合分析了聚光器跟踪控制精度和综合性能对碟式太阳能发电系统的重要作用和影响,介绍了一种高精度碟式太阳能聚光器跟踪控制系统的构成和工作原理,建立了核心控制器PLC中的PID及自适应模糊PID控制的Matlab/Simulink仿真数学模型,比较分析了在单位阶跃信号和扰动作用下不同控制策略时跟踪控制系统的响应特性.结果表明:自适应模糊PID控制下碟式太阳能聚光器跟踪控制系统不仅具有良好的跟踪控制精度,也具有抗干扰能力强和稳定性能好的优点,大大提高了碟式太阳能聚光器跟踪控制系统的综合性能.  相似文献   

5.
基于循环统计量的轧机偏心线性预测及补偿控制   总被引:2,自引:1,他引:1  
提出了一种轧机偏心特性曲线概念. 基于偏心测试信号的循环统计量建立线性预测模型,在线确定轧机偏心补偿量数据,实现轧机偏心的实时直接数据补偿控制. 该方法能够准确反映并跟踪轧机偏心扰动的实际变化,满足对轧机偏心信号进行在线实时补偿控制的要求.  相似文献   

6.
自适应小波去噪算法及其在偏心补偿中的应用   总被引:1,自引:0,他引:1  
针对液压自动厚度控制(AGC)系统中轧辊偏心信号的补偿问题,提出一种基于自适应小波阈值去噪算法的补偿方法.该方法根据噪声在小波变换下的特性自适应地确定小波分解的阈值,将去噪信号的信噪比作为性能指标,采用黄金分割法进行寻优,得到最优的阈值参数.仿真结果表明,该方法比原有的阈值去噪方法效果更佳,对液压AGC系统中轧辊的偏心信号具有良好的补偿效果.  相似文献   

7.
庄园 《科学技术与工程》2013,13(26):7843-7846
在光电跟踪系统中,伺服系统的跟踪精度决定了其捕获跟踪能力。随着光电跟踪伺服系统对跟踪精度的要求逐步提高,将重复控制技术引入到伺服系统中。重复控制不仅能够实现高精度跟踪、改善系统性能,而且可以跟踪周期性信号。设计了优化插入式重复控制器,并对等效正弦信号进行跟踪。与常用高精度控制方法进行仿真比较,其结果表明,重复控制系统的跟踪误差明显减小,其跟踪精度得到明显提高。  相似文献   

8.
在深入分析机架偏心作用机制的基础上,提出了轧机偏心补偿控制信息相域滤波提取方法,它利用机架偏心轧制作用强度与轧制过程中轧辊的机械转动相位密切相关的特点,将轧机的时域轧制数据转换为以轧辊转动相位为参变量的数据进行处理.在线性化相域空间中,与轧辊偏心作用相关的信号呈现出显著的周期化特征,而其余的原时域周期信号在转换过程中均被非周期化.在线性化相域空间中,将轧辊转动轧制作用的往复周期作为指定的循环统计量统计周期.理论分析表明,基于统计方法能够有效地消除噪声的影响,同时抑制非指定线性化相域循环分量,实现机架偏心特性信息的有效获取,其实质是线性化相域空间中的梳状滤波器滤波.依据统计获取的机架偏心特征信息可以为轧机偏心补偿提供一定的数据参考.  相似文献   

9.
为了提高UPS电源输出电压波形质量,建立了带隔离变压器的三相UPS状态空间解耦模型.根据PID控制的快速响应性和重复控制的无静差跟踪特性,提出了一种新型的三相UPS输出电压重复控制与PD复合控制的方案,并对控制系统进行了稳定性分析.改进型重复控制器结构简单,易于实现.试制了30KVA三相UPS样机,主控制器为32位DSP TMS320F2812.实验结果表明了在线性和非线性负载情况下,系统均具有良好的稳态和动态特性,输出电压总谐波畸变(THD)较小.  相似文献   

10.
首先研究了先进的HMFFT和A-WAVELET算法,然后依托实验室的四辊液压轧机,对这两种轧辊偏心算法进行了实验研究.提出了一种有效的偏心相位检测和控制方法,建立了轧辊偏心控制的两级控制系统,进行了两种算法的软件设计和编程,在液压轧机上进行了实验.实验效果明显,采用先进算法的两级偏心控制系统为实际生产线轧辊偏心控制问题的实施解决提供了一种新的整体解决方案.  相似文献   

11.
多分辨小波控制器在轧辊偏心控制中的应用   总被引:4,自引:1,他引:4  
提出了一种用于轧辊偏心控制的多分辨小波控制器,它利用小波对轧制力信号进行多分辨分解.机架的轧制力中包含着许多潜在因素的累积影响,比如压下环节的动特性、轧辊偏心、测量噪声、外部干扰等,这些影响体现在不同的尺度上.通过小波的多分辨分解,这些不同尺度上的信息被区分开来,然后在控制中对轧辊偏心进行补偿.仿真实验表明该方法是有效的.  相似文献   

12.
一种改进的轧辊偏心控制方法   总被引:2,自引:0,他引:2  
  相似文献   

13.
海上风电风速变化很大,采用PID控制难以在不同风速下有好的控制效果.本文在分析PID控制器缺点的基础上,提出灰色预测与模糊PID控制相结合的新型控制方法.模糊PID控制器能够保证在不同风速下均有较好的控制结果,而灰色预测则能够根据以往输出功率给出相应适当的补偿信号,提高控制系统的响应速度,确保最大功率的实时跟踪.对系统...  相似文献   

14.
为了避免车辆在不同路面状况下发生侧翻现象,提高车辆行驶的稳定性,采用改进PID控制车辆侧倾角位移运动轨迹。创建车辆模型简图,给出车辆侧倾运动方程式。引用PID控制方法,对粒子群算法惯性权重系数进行改进,将改进粒子群算法用于优化PID控制,设计出车辆侧倾角位移控制流程,对控制器参数进行优化和调节。通过MATLAB软件对车辆侧倾角位移跟踪效果进行仿真验证,并与PID控制效果进行比较。结果表明:路面在无波形干扰条件下,采用传统PID控制和改进PID控制方法都能较好地完成车辆侧倾角位移跟踪,跟踪误差较小;路面受到波形干扰条件下,采用传统PID控制侧倾角位移跟踪误差较大,而改进PID控制侧倾角位移跟踪误差较小。采用改进PID控制方法,可以抑制路面波形的干扰,提高车辆侧倾角位移跟踪精度。  相似文献   

15.
为提高凸轮磨削的加工精度, 减小凸轮的轮廓误差, 并进一步提高磨削系统的鲁棒性, 采用了新的误差补偿方法--仿形跟踪误差补偿, 将实际的仿形跟踪误差值补偿到X 轴的给定数值序列。运用Matlab 搭建了两轴联动反馈系统, 并设计模糊PID(Proportional-Integral-Derivative)控制器以实现对系统的在线补偿。采用一种形状较难加工的凸轮片作为实验对象验证补偿效果和控制器的性能。仿真实验结果表明, 该方法不仅能有效减小凸轮的轮廓误差, 简化了计算过程, 并且使系统的响应速度加快, 与传统PID 控制器相比还具有较好的鲁棒性。  相似文献   

16.
基于新型PID神经网络的自适应控制系统研究   总被引:1,自引:1,他引:0  
提出一种新的PID型神经网络的自适应控制系统,该控制系统采用对角递归神经网络辨识对象的正向模型,采用一种新型神经网络控制器产生控制量,与常规PID控制不同的是,该控制量不再是误差信号的比例、积分和微分量的简单线性组合,而是这些信号的一种非线性组合,从而可以有效地解决常规PID控制器存在的快速性和超调量之间的矛盾.仿真实验表明,这种新型控制系统具有较强的自适应性和鲁棒性.  相似文献   

17.
针对串联机械手运动角位移跟踪误差较大问题,提出了改进模糊PID控制方法。创建串联机械手简图模型,给出机械手动力学方程式,设计了模糊PID控制系统。引用粒子群算法并对其进行改进,采用改进粒子群算法优化模糊PID控制器,将改进模糊PID控制器用于控制串联机械手角位移变化。采用Matlab软件对串联机械手角位移跟踪误差进行仿真验证,并且与传统PID控制器和模糊PID控制器仿真结果形成对比。仿真结果显示,串联机械手采用PID控制器和模糊PID控制器,其角位移跟踪误差较大,而采用改进模糊PID控制器,角位移跟踪误差较小。串联机械手采用改进模糊PID控制器,可以提高控制系统的稳定性,削弱机械手的抖动现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号