首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
组蛋白H3第36位赖氨酸的甲基化修饰在染色质上含量丰富,与活跃转录以及DNA损伤修复等重要生理过程相关.H3K36位点可以被一甲基化、二甲基化和三甲基化3种形式修饰,目前已知的负责组蛋白H3K36三甲基化修饰的人源蛋白是SETD2,负责组蛋白H3K36二甲基化修饰的酶包含NSD1、NSD2和NSD3和ASH1L共4名成员.这些H3K36甲基转移酶都具有非常特异的H3K36位点选择性,因此,对调控体内H3K36甲基化修饰的水平和分布十分重要.此外,它们的表达异常与人类的多种疾病相关.因此,解析组蛋白H3K36甲基转移酶识别并修饰组蛋白底物的分子机制,对揭示这些酶参与的表观遗传调控机制及其在体内的生理功能都具有十分重要的意义.早期的研究使得人们对组蛋白H3K36甲基转移酶催化底物的机制有了较深入的认识,但是由于解析的修饰酶与底物复合物的结构较少,对这些酶特异识别组蛋白底物分子机制的认识尚有很多不足.近年来,随着冷冻电镜技术的应用,H3K36甲基转移酶与核小体底物的复合物结构相继取得了突破,极大地推进了人们对这些酶识别并催化组蛋白底物分子机制的认识.本文以这几个组蛋白H3K36甲基转移酶为主要目标,对其分子机制的最新进展进行介绍总结.   相似文献   

3.
In plants, one of the most common modifications of secondary metabolites is methylation catalyzed by various methyltransferases. Recently, a new class of methyltransferases, the SABATH family of methyltransferases, was found to modify phytohormones and other small molecules. The SABATH methyltransferases share little sequence similarity with other well characterized methyl-transferases. Arabidopsis has 24 members of the SABATH methyltransferase genes, and a subset of them has been shown to cat-alyze the formation of methyl esters with phytohormones and other small molecules. Physiological and genetic analyses show that methylation of phytohormones plays important roles in regulating various biological processes in plants, including stress responses, leaf development, and seed maturation/germination. In this review, we focus on phytohormone methylation by the SABATH family methyltransferases and the implication of these modifications in plant development.  相似文献   

4.
V Nagaraja  J C Shepherd  T A Bickle 《Nature》1985,316(6026):371-372
Early attempts to generate new restriction specificities by recombination between allelic restriction-modification systems have been unsuccessful. Bullas et al. succeeded in isolating a new specificity, SQ, in Salmonella that they interpreted as being the result of a recombination event between the parental strains, Salmonella typhimurium and S. postdam, which encode the SB and SP restriction systems, respectively. This interpretation has recently been confirmed by DNA heteroduplex studies with the SB, SP and SQ structural genes. We have determined the DNA sequences recognized by the SB and SP enzymes and found that, like all type I restriction sequences, they are split into two specific domains by a spacer of nonspecific sequence that, for both SB and SP, is 6 base pairs (bp) long. We have now determined the sequence recognized by the recombinant SQ enzyme and find that it is a hybrid between the SB and SP sequences, containing one specific domain from each parental strain. This result implies that each of the two specific domains is recognized by a physically distinct part of the enzyme.  相似文献   

5.
J E Houghton  G A O'Donovan  J R Wild 《Nature》1989,338(6211):172-174
The polar domains of the two transcarbamoylases, aspartate transcarbamoylase (ATCase) and ornithine transcarbamoylase, (OTCase) from Escherichia coli bind the common substrate carbamoyl phosphate and share extensive amino-acid sequence homology. The equatorial domains of the two enzymes differ in their substrate specificity (ATCase binds aspartate, OTCase binds ornithine) and have decreased sequence identity. While addressing the conservation of specific protein interactions during the evolution of these enzymes, we were able to switch one of their amino-acid-specific equatorial domains to produce a viable chimaeric enzyme. This was achieved by the in vitro fusion of DNA encoding the polar domain of OTCase to DNA encoding the equatorial domain of ATCase. The resulting gene fusion successfully transformed an argI-pyrB deletion strain of E. coli to pyrimidine prototrophy, giving rise to Pyr+ transformants that expressed ATCase but not OTCase activity. The formation of this active chimaeric enzyme shows that by exchanging protein domains between two functionally divergent enzymes we have achieved a switching in substrate specificity.  相似文献   

6.
Bouzat C  Gumilar F  Spitzmaul G  Wang HL  Rayes D  Hansen SB  Taylor P  Sine SM 《Nature》2004,430(7002):896-900
Neurotransmitter receptors from the Cys-loop superfamily couple the binding of agonist to the opening of an intrinsic ion pore in the final step in rapid synaptic transmission. Although atomic resolution structural data have recently emerged for individual binding and pore domains, how they are linked into a functional unit remains unknown. Here we identify structural requirements for functionally coupling the two domains by combining acetylcholine (ACh)-binding protein, whose structure was determined at atomic resolution, with the pore domain from the serotonin type-3A (5-HT3A) receptor. Only when amino-acid sequences of three loops in ACh-binding protein are changed to their 5-HT3A counterparts does ACh bind with low affinity characteristic of activatable receptors, and trigger opening of the ion pore. Thus functional coupling requires structural compatibility at the interface of the binding and pore domains. Structural modelling reveals a network of interacting loops between binding and pore domains that mediates this allosteric coupling process.  相似文献   

7.
M J Irwin  K R Hudson  J D Fraser  N R Gascoigne 《Nature》1992,359(6398):841-843
Superantigens such as the staphylococcal enterotoxins bind to major histocompatibility complex (MHC) class II molecules and activate T cells through a specific interaction between the V beta region of the T-cell antigen receptor (TCR) and the toxin. The TCR beta-chain alone is sufficient to produce the interaction with the enterotoxin-class II complex. Identification of the regions of enterotoxins that interact with TCR has so far proved equivocal because of difficulties in distinguishing between direct effects on T-cell recognition and indirect effects resulting from alteration of binding to class II. For example, amino-terminal truncations of SEB abrogated T-cell stimulation whereas carboxy-terminal truncation of SEA stopped its mitogenic activity. The most comprehensive study to date, accounting for both enterotoxin binding to class II and enterotoxin interactions with the TCR, identified two functionally important regions for SEB binding to TCR. Although the amino-acid sequences of staphylococcal enterotoxins A and E are 82% identical, they activate T cells bearing different V beta elements. We have assayed the binding of cells coated with these enterotoxins to soluble secreted TCR beta-chain protein and find that V beta 3 binds enterotoxin A but not E, whereas V beta 11 binds enterotoxin but not A. To map the amino-acid residues responsible for these different binding specificities, we prepared a series of hybrids between the two staphylococcal enterotoxins. We report that just two amino-acid residues near the carboxy terminus of the enterotoxins are responsible for the discrimination between these molecules by V beta 3 and V beta 11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A histone H3 methyltransferase controls DNA methylation in Neurospora crassa.   总被引:26,自引:0,他引:26  
H Tamaru  E U Selker 《Nature》2001,414(6861):277-283
DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. We have demonstrated previously that dim-2 encodes a DNA methyltransferase that is responsible for all known cytosine methylation in Neurospora crassa. Here we report that another Neurospora gene, dim-5, is required for DNA methylation, as well as for normal growth and full fertility. We mapped dim-5 and identified it by transformation with a candidate gene. The mutant has a nonsense mutation in a SET domain of a gene related to histone methyltransferases that are involved in heterochromatin formation in other organisms. Transformation of a wild-type strain with a segment of dim-5 reactivated a silenced hph gene, apparently by 'quelling' of dim-5. We demonstrate that recombinant DIM-5 protein specifically methylates histone H3 and that replacement of lysine 9 in histone H3 with either a leucine or an arginine phenocopies the dim-5 mutation. We conclude that DNA methylation depends on histone methylation.  相似文献   

9.
S Wu  T L Saunders  F H Bach 《Nature》1986,324(6098):676-679
Class II molecules encoded by the human major histocompatibility complex (MHC) are involved in regulating T-cell response to antigens. The mechanisms for generating polymorphism in products of the MHC have been studied extensively for both the murine H-2 and the human HLA complex. Such studies indicate that point mutations plus selection have a major role in the generation of polymorphisms of class I and class II MHC genes. However, a non-reciprocal gene conversion mechanism has been proposed to explain several examples of clustered sequence variation in MHC genes. In all these examples, the proposed gene conversion event is unidirectional; that is, one of the two interacting genes acts as sequence donor and the other as sequence recipient. No examples of potential reciprocal genetic exchange (as occurs in the fungal system), in which the two interacting genes act as both donor and recipient of gene fragments, have been found in the MHC system or in other multigene families of higher organisms. We sequenced two different HLA-DR beta complementary DNAs from each of two different cells all expressing the same serologically defined determinant (DR2) but different T-cell-recognized (Dw) specificities (Dw12 and MN2). Sequence comparisons of these four cDNA clones (and two DR beta amino-acid sequences from the DR2-Dw2 subtype) suggest that new coding sequences for DR beta molecules in the DR2 haplotypes are potentially generated by reciprocal intergenic exchange.  相似文献   

10.
Demethylation of CpG islands in embryonic cells   总被引:16,自引:0,他引:16  
D Frank  I Keshet  M Shani  A Levine  A Razin  H Cedar 《Nature》1991,351(6323):239-241
DNA in differentiated somatic cells has a fixed pattern of methylation, which is faithfully copied after replication. By contrast, the methylation patterns of many tissue-specific and some housekeeping genes are altered during normal development. This modification of DNA methylation in the embryo has also been observed in transgenic mice and in transfection experiments. Here we report the fate in mice of an in vitro-methylated adenine phosphoribosyltransferase transgene. The entire 5' CpG island region became demethylated, whereas the 3' end of the gene remained modified and was even methylated de novo at additional sites. Transfection experiments in vitro show that the demethylation is rapid, is specific for embryonic cell-types and affects a variety of different CpG island sequences. This suggests that gene sequences can be recognized in the early embryo and imprinted with the correct methylation pattern through a combination of demethylation and de novo methylation.  相似文献   

11.
Acetylation, phosphorylation and methylation of the amino-terminal tails of histones are thought to be involved in the regulation of chromatin structure and function. With just one exception, the enzymes identified in the methylation of specific lysine residues on histones (histone methyltransferases) belong to the SET family. The high-resolution crystal structure of a ternary complex of human SET7/9 with a histone peptide and cofactor reveals that the peptide substrate and cofactor bind on opposite surfaces of the enzyme. The target lysine accesses the active site of the enzyme and the S-adenosyl-l-methionine (AdoMet) cofactor by inserting its side chain into a narrow channel that runs through the enzyme, connecting the two surfaces. Here we show from the structure and from solution studies that SET7/9, unlike most other SET proteins, is exclusively a mono-methylase. The structure indicates the molecular basis of the specificity of the enzyme for the histone target, and allows us to propose a model for the methylation reaction that accounts for the role of many of the residues that are invariant across the SET family.  相似文献   

12.
13.
Use of restriction enzymes to detect potential gene sequences in mammalian DNA   总被引:15,自引:0,他引:15  
S Lindsay  A P Bird 《Nature》1987,327(6120):336-338
  相似文献   

14.
15.
E.coli dam-dcm是一种在分子生物学技术中被广泛应用的菌株之一。Dam和Dcm是两种甲基转移酶,Dam识别GATC位点而Dcm识别CCA(T)GG位点[1],在E.coli细胞的生命活动中,dam基因产物在DNA的错配修复中具有重要作用,另外,dam的甲基化作用和DNA的复制和基因表达的调节等细胞生命活动过程,Dcm甲基化的生物学功能在很短的补丁修复有很重要的作用。Streptomyces(链霉菌),Bacillus(芽胞杆菌)和Paracoccus(副球菌)的转化通过用dam和dcm位点没有甲基化的DNA可以得到很大的改善[6]。因为5-甲基胞嘧啶对肼有抗生,所以 从dcm缺陷的菌株分离到的DNA用Mazam和Gilbert法进行测序,结果更好[10]。  相似文献   

16.
Cellular messenger RNA (mRNA) of higher eukaryotes and many viral RNAs are methylated at the N-7 and 2'-O positions of the 5' guanosine cap by specific nuclear and cytoplasmic methyltransferases (MTases), respectively. Whereas N-7 methylation is essential for RNA translation and stability, the function of 2'-O methylation has remained uncertain since its discovery 35 years ago. Here we show that a West Nile virus (WNV) mutant (E218A) that lacks 2'-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling. 2'-O methylation of viral RNA did not affect IFN induction in WNV-infected fibroblasts but instead modulated the antiviral effects of IFN-induced proteins with tetratricopeptide repeats (IFIT), which are interferon-stimulated genes (ISGs) implicated in regulation of protein translation. Poxvirus and coronavirus mutants that lacked 2'-O MTase activity similarly showed enhanced sensitivity to the antiviral actions of IFN and, specifically, IFIT proteins. Our results demonstrate that the 2'-O methylation of the 5' cap of viral RNA functions to subvert innate host antiviral responses through escape of IFIT-mediated suppression, and suggest an evolutionary explanation for 2'-O methylation of cellular mRNA: to distinguish self from non-self RNA. Differential methylation of cytoplasmic RNA probably serves as an example for pattern recognition and restriction of propagation of foreign viral RNA in host cells.  相似文献   

17.
应用不同浓度的dNTP逆转录反应,分析丁苦瓜、丝瓜、蓖麻和水稻的25SrRNA sarcin/ricin区域中的甲基化核苷,发现了这4种植物25SrRNA的第3023、2966和2962位的腺嘌呤、胸腺嘧啶和腺嘌呤是2’-0-甲基化核苷;在丝瓜和苦瓜25SrRNA的第2992、2990位的胞嘧啶和鸟嘿吟是葫芦科植物所特有的两个2’-0—甲基化核苷;第2994位点的尿嘧啶是苦瓜、丝瓜、蓖麻和水稻的一个碱基甲基化核苷;而且,植物25SrRNA第3023位甲基化腺嘌呤核苷刚好位于sarcin/ricin结构域的茎环上,与核糖体失活蛋白切割位点相距仅5个核苷酸,而在哺乳动物和酵母的rRNA相同位点上没有甲基化修饰的存在,根据这一结果推测,RIPS来源植物核糖体RNA的自我保护可能与这一位点的修饰有关。  相似文献   

18.
D H Wreschner  J W McCauley  J J Skehel  I M Kerr 《Nature》1981,289(5796):414-417
The oligonucleotides pppA2'p5'A2'p5'A and related oligomers (2-5A) are synthesized by an enzyme that is widely distributed in a variety of cells, the activity of which varies with interferon treatment, growth and hormone status. Because significant amounts of 2-5A have recently been detected in interferon-treated cells, it has been suggested that the oligonucleotides may be involved in interferon action and in the control of cell metabolism. In both intact cells and cell-free systems 2-5A has been shown to activate a ribonuclease. We report here investigations of the sequence specificities of the 2-5A-dependent ribonucleases in extracts of rabbit reticulocytes, mouse ascites tumour cells and human lymphoblastoid cells in conditions of partial digestion using terminally labelled RNA substrates. The enzymes cleaved on the 3'-side of UN sequences to yield UpNp terminated products. Cleavage was observed predominantly at UA and UU sequences.  相似文献   

19.
20.
T Shioda  J A Levy  C Cheng-Mayer 《Nature》1991,349(6305):167-169
Strains of human immunodeficiency virus type 1 (HIV-1) display a high degree of biological heterogeneity which may be linked to certain clinical manifestation of AIDS. They vary in their ability to infect different cell types, to replicate rapidly and to high titre in culture, to down-modulate the CD4 receptor, and to cause cytopathic changes in infected cells. Some of these in vitro properties correlate with pathogenicity of the virus in vivo. To map the viral determinants of the cellular host range of HIV-1, recombinant viruses were generated between biologically active molecular clones of HIV-1 isolates showing differences in infection of primary peripheral blood macrophages and established T-cell lines. We report here that a specific region of the envelope gp120 gene representing 159 amino-acid residues of glycoprotein gp120 seems to determine macrophage tropism, whereas an overlapping region representing 321 amino-acid residues determines T cell-line tropism. These studies provide a basis for relating functional domains of the HIV-1 env gene to pathogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号