首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 135 毫秒
1.
酸性矿井水因pH值低、重金属离子含量高,难以直接采用硫酸盐还原菌生化处理.试验构建了空气阴极微生物燃料电池系统来处理酸性矿井水,有效处理废水H+和重金属离子,同时还能产电.构建的空气阴极微生物燃料电池系统(污泥量40mL,硫酸盐还原菌30mL,阳极材料为碳布,室温)的最大功率密度达到82.24mW/m2,最大电压为332.2mV;硫酸根的最大去除率达到41.6,对Zn2+、Cu2+、Cd2+和Fe2+的去除率分别达到83.7%、77.4%、84.2%和66.8%,化学需氧量的最大去除率达到60.9%.分析认为,空气阴极微生物燃料电池有效处理废水H+,弱化了H2S的生物抑制作用,强化了硫酸盐还原菌还原产生的S2-与重金属离子生成硫化物,并经能谱分析加以验证.  相似文献   

2.
以筛选出的芬式纤维微菌属菌株T1为研究对象,研究了其用于固定化生物活性炭(IBAC)工艺对矿山酸性废水(AMD)中重金属Zn2+的吸附规律.结果表明,在水力负荷019m3·(m2·h)-1、气水体积比10∶1、水力停留时间380h,IBAC对Zn2+质量浓度10000mg/L,pH值4的酸性废水中Zn2+去除率达到7518%,且水质得到改善.共存离子Cu2+,Cd2+,Fe3+,Ni2+使IBAC对Zn2+的去除率降低.扫描电镜发现,菌株T1细胞成纤维状,且在活性炭颗粒表面附着生长,吸附Zn2+后细胞体积膨胀.EDS分析表明,固定在活性炭颗粒表面的微生物吸附大量Zn2+.反应动力学研究表明,IBAC吸附AMD中Zn2+基本符合一级反应动力学模型.  相似文献   

3.
为了探索生物质材料酒糟对重金属离子的吸附效果,采用静态吸附实验研究废水pH值、Pb2+和Zn2+初始质量浓度以及吸附时间对酒糟吸附模拟矿山酸性废水中Pb2+和Zn2+的影响. pH值为4时酒糟对Pb2+和Zn2+的吸附量分别达到最高值,酒糟对Pb2+的吸附等温线特征符合Langmuir方程,对Zn2+的吸附等温线特征符合Freundlich方程,对Pb2+和Zn2+的最大吸附量分别为8.29 mg·g-1和15.31 mg·g-1.酒糟对Pb2+和Zn2+的吸附反应在4 h后达到平衡,吸附动力学特征均符合拟二级动力学模型.酒糟中纤维素、半纤维素和木质素的质量分数分别为23.3%、65.5%和0.5%,吸附Pb2+和Zn2+后3种物质的含量发生变化,分别为19.6%、42.3%和2.6%.酒糟电负性随pH值升高呈正比增加,吸附Pb2+和Zn2+后电负性减弱.红外光谱分析结果显示酒糟中参与吸附反应的基团主要有酰胺基和酯基.  相似文献   

4.
将β-CD固载到聚苯乙烯上,并将固载产物应用于模拟水样和实际废水的处理.结果表明:当pH为5~7时固载化环糊精对水样中污染物的吸附率接近100%;对苯酚、苯胺、Cu2 、Pb2 、Zn2 、Cd2 的饱和吸附量分别为81.85、67.80、89.25、965.58、48.81、99.55mg·g-1,且该树脂可再生使用4次.在一定浓度范围内,处理后实际废水的Pb2 、Cu2 、Cd2 、Zn2 的浓度、CODCr和pH值都达到了污水排入城市下水道标准CJ3082-1999.  相似文献   

5.
大宝山尾矿库向下游排放的尾矿水为酸性水,其pH值低至2.5~3.5,Cd2+、Pb2+、Zn2+和SO42-等离子含量高,对下游生态会继续造成严重污染。利用9K培养基从大宝山酸性矿山废水中分离出了氧化亚铁硫杆菌,并对其生长性能作了初步研究。在分离培养过程中生成了黄钾铁矾沉淀。黄钾铁矾的生成是溶液pH值下降的主要原因。实验还表明,在pH为2.0~2.5的9K培养基培养10 d后,酸性矿山废水的Cd2+、Cu2+、Pb2+、Zn2+等重金属离子含量较高,pH为3.0时降低。  相似文献   

6.
为研究可渗透反应床固定化硫酸盐还原菌对酸性矿井水中多种重金属离子的原位修复效果,利用厌氧反应器模拟可渗透反应床,考察了硫酸盐还原菌对重金属的耐受性,及驯化后的硫酸盐还原菌对实验室模拟酸性矿井水中重金属离子的处理效果.结果表明,驯化后的硫酸盐还原菌混合菌群可有效去除酸性矿井水中多种重金属离子,其中Cu2+、Pb2+、Zn2+去除率均可达到90.4%以上,Cd2+的去除率也能达到75.67%以上.  相似文献   

7.
生物炭施用对污染红壤中重金属化学形态的影响   总被引:11,自引:0,他引:11  
采用BCR分级提取的方法研究了2种不同生物炭施用对污染红壤中重金属Cu、Zn、Cd和Pb化学提取形态的影响.结果表明,生物炭施用提高了土壤pH值和有机质含量.实验土壤中重金属Cu、Zn、Cd和Pb均主要以残渣态存在(分别为86.11%、63.30%、66.24%、50%),施用鸡粪生物炭(P)后Cu、Cd和Pb的可还原态比例降低,Zn可还原态与Cu、Zn、Cd、Pb的酸可提取态和可氧化态的比例都有所增加.施用木屑生物炭(W)后Zn、Cd和Pb的可还原态比例降低,Cu、Zn、Cd和Pb的酸可提取态,Cu可还原态及Cu、Zn可氧化态的比例增加.总体来看,施用木屑生物炭(W)和鸡粪生物炭(P)后,Cu和Zn的残渣态所占比例分别降低了9.3%、27%,3.7%和16%,而Cd和Pb的残渣态比例分别增加了3.6%、3.0%,4.5%和3.7%,表明施用2种生物炭可以增加Cu和Zn的生物有效性,且施用P生物炭后增加的比例大于施用W生物炭;降低Cd和Pb的生物有效性,但施用2种生物炭后降低的比例相差不大.  相似文献   

8.
以鸡蛋壳为原料,利用水热法合成HAP.所合成HAP的Ca/P比为1.74.以制备的HAP吸附去除模拟废水中的Pb2+ 、Cd2+的研究表明,HAP对Pb2+、Cd2+去除率接近100%.HAP对Pb2+、Cd2+的最优吸附条件为pH<3.5、搅拌时间为1 h、吸附温度为25℃,在此条件下,HAP对1000 mg/L的含铅模拟废水Pb2+的吸附容量达200 mg/g.HAP用量5 g/L,pH值为6,作用时间5 min,在Cd2+初始浓度小于10 mg/L时,处理后的含镉废水可达到排放标准.  相似文献   

9.
探讨了吸附时间、溶液pH、重金属离子初始质量浓度、离子强度以及竞争吸附等因素对天然高岭土吸附水中Pb2+,Cd2+,Ni2+,Cu2+等重金属离子的影响.结果表明,pH、初始质量浓度、离子强度以及共存离子,是影响高岭土吸附重金属离子的主要因素;高岭土对Pb2+的吸附性能明显优于其它3种重金属离子,顺序为:Pb2+>Cd2+>Ni2+>Cu2+;吸附等温线均符合Freundlich型等温方程,说明高岭土对这几种离子都是典型的单分子层吸附;Pb2+,Cd2+,Ni2+,Cu2+离子解吸量大小顺序为:Pb2+<Ni2+<Cu2+<Cd2+.  相似文献   

10.
二段中和法处理酸性矿山废水   总被引:5,自引:0,他引:5  
采用石灰与氢氧化钠二段中和法处理酸性矿山废水.研究结果表明:用石灰调节废水pH至5时,Fe,Mn,Zn的去除率分别为14.14%,5.94%和13.91%;采用氢氧化钠二段中和后,当废水pH为10.20,曝气流量为50mL/min,反应时间为20 min时,废水中铁、锰、锌去除率均达到99.7%以上,其废水中TFe,Mn2+和Zn2+残留质量浓度分别为80,810,30μg/L,均低于国家污水综合排放标准(GB 8978-1996).石灰一段中和渣为石膏(CaSO4·2H2O);氢氧化钠二段中和渣为锰锌铁氧体(Fe2Mn0.5Zn0.5O4·nH2O)和四氧化三铁(F03O4);石灰与氢氧化钠二段中和法与石灰中和法相比较,二段中和渣量少,二段中和渣具有综合利用价值.  相似文献   

11.
在室内模拟条件下研究了重金属离子浓度、吸附时间、废水pH值、温度和固液比等因素对污泥活性炭去除废水中重金属的影响.结果表明:Cd2+浓度为40 mg·L^-1、Zn^2+浓度为10 mg· L^-1、Pb2+浓度为10 mg·L^-1、Cu^2+浓度30 mg·L^-1,吸附90 min,pH值为4,温度为25℃,固液比为10g·L^-1的条件下,污泥活性炭对废水中Cd^2+、Zn^2+、Pb^2+、Cu^2+的去除效果最佳,去除率均在53%以上.  相似文献   

12.
针对重金属复合污染问题,通过等温吸附实验,研究了海泡石对复合重金属Cu2+、Zn2+、Cd2+的平衡吸附量和吸附选择性,并通过XRD、IR等分析探讨了海泡石的吸附机理。结果表明:海泡石对Cu2+、Zn2+、Cd2+的吸附顺序和富集系数顺序均为Cu2+>Cd2+>Zn2+,并且平衡吸附量随初始溶液质量浓度的提高而增大;海泡石对重金属离子的吸附主要是离子交换吸附及表面络合吸附。该研究证明海泡石具有较强的吸附复合重金属离子的能力,可修复重金属复合污染的废水及土壤。  相似文献   

13.
改进氧瓶燃烧-氢化物发生原子荧光法测定淀粉中微量汞   总被引:1,自引:0,他引:1  
用连续通O2、连续排放燃烧废气及采用吸收液吸收被测组分的改进氧瓶燃烧法处理淀粉试样,用氢化物发生原子荧光光谱法测定淀粉中的汞含量。当通O2量为300mL/min时,1.5g淀粉试样在10min内可完全燃烧。经装有冷却的10mL含0.5g/L(NH4)2S2O8的(5+95)HNO3溶液将汞氧化吸收为Hg^2+后排出废气,制成的汞试液用氢化物发生原子荧光光谱法测定。汞的回收率为91.0%~95.5%,相对标准偏差5.1%。当相对误差在±5%时,500倍的Zn^2+、Cd^2+,300倍的Pb^2+,100倍的As(Ⅲ)、Sb(Ⅲ)、Bi(Ⅲ)、Ge(Ⅳ)、Se(Ⅳ)不干扰测定。改进的氧瓶燃烧法为处理试样量大的有机物中痕量组分测定提供了一种简单、快速、廉价的新方法。  相似文献   

14.
以瓯江彩鲤为试验对象,采用静水换水法研究了Cu^2+、Cd^2+对瓯江彩鲤的急性毒性效应.其目的在于评价水环境中Cu^2+和Cd^2+对瓯江彩鲤的影响,为瓯江彩鲤的养殖水质风险评价提供一定的参考依据.结果表明,Cu^2+、Cd^2+对瓯江彩鲤均具有潜在的毒性效应,Cu^2+对瓯江彩鲤24,48,72和96h的LC50分别为0.18,0.13,0.09和0.08mg·L^-1,Cd^2+对瓯江彩鲤24,48,72和96h的LC50分别为6.23,5.48,4.71和4.56mg·L^-1;Cu^2+和Cd^2+对瓯江彩鲤的毒性顺序为Cu^2+〉Cd^2+瓯江彩鲤死亡率与Cu^2+、Cd^2+浓度均呈二次曲线关系,Cu^2+、Cd^2+对瓯江彩鲤的安全浓度分别为0.008、0.46mg·L^-1.  相似文献   

15.
基于Pb^2+对CaAl2O4:Eu^2+,Nd^3+纳米颗粒的荧光猝灭作用,建立了用琼脂溶液来固定CaAl2O4:Eu^2+,Nd^3+纳米颗粒并用于测定水中微量Pb^2+的荧光分析新方法.在pH=3.0的条件下,测定的荧光最大激发波长和发射波长分别为328nm和440nm,测定Pb^2+浓度的线性范围为6.0×10^-6mol·L^-1-8.0×10^-4mol·L^-1,回收率为97.7%-107.0%.该方法用于水中Pb^2+的测定,结果满意.  相似文献   

16.
设计合成了一种基于新型香豆素水合肼希夫碱荧光探针,结构经。HNMR表征.利用荧光光谱研究了该探针分子对铜离子的识别作用.实验表明,该探针对铜离子具有较好的选择性识别能力,加入铜离子后,该探针的荧光发射强度显著减弱,并且荧光发射强度随着Cu^2+浓度的增加而减弱.通过荧光离子滴定实验对其选择性和抗干扰能力进行了系统研究,发现加入其他常见金属离子(如Al^3+、Ca^2+、Co^2+、Cr^3+、Fe^3+、K^+、Mg^2+、Na^+、Ni^2+、Zn^2+等),荧光强度没有发生变化,并且上述各种离子分别与铜离子共存时,对其没有干扰.结果表明,香豆素水合肼希夫碱荧光探针对铜离子具有较高选择性识别.  相似文献   

17.
在pH 6.5的Na2HPO4-KH2PO4缓冲介质中及阳离子表面活性剂溴化十六烷基三甲胺(Cetyltrimethyl ammonium Bromide,CTMAB)存在下,研究了2,3,7-三羟基-9-(3,4-二羟基)苯基荧光酮(3,4-DHPF)与Cu2+之间的显色反应,以此建立了分光光度法测定铜的新方法.结果表明:Cu^2+和3,4-DHPF形成2∶1的红色络合物,其最大吸收波长为558 nm,测定Cu^2+表观摩尔吸光系数为1.28×10^5L.mol^-1.cm^-1,Cu2+含量在0-1.2μg/5 mL范围内符合比尔定律.采用拟定分析方法用于钢样中微量铜的测定,结果满意.  相似文献   

18.
芬顿试剂氧化污水及无机离子影响的研究   总被引:5,自引:0,他引:5  
采用芬顿试剂对生活污水进行预氧化处理,通过测定COD、BOD5变化来比较氧化效果.在单因素实验的基础上,采用正交实验研究.芬顿试剂的最佳氧化工艺是:FeSO4.7H2O物质的量为3mmol,pH值为3,n(H2O2)∶n(Fe^2+)为3∶1;反应时间为120 min.处理后的废水的可生化性、COD去除率大大提高,为进一步的生化处理创造了良好的条件;研究了几种无机离子对芬顿试剂氧化的促进或抑制作用.研究表明,Fe3+具有一定的促进作用,而Cu^2+、Cl^-有一定的抑制作用,H2PO4-有较强的抑制作用.  相似文献   

19.
高盐度化学制药废水预处理试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用"蒸馏+铁炭内电解+絮凝"工艺对某制药企业排放的废水进行预处理。经过蒸馏脱盐后,综合废水盐度(质量分数,下同)由7.4%降至0.15%;再采用"铁炭内电解+絮凝"工艺进行处理,内电解试验最佳工艺条件:进水pH值为3.0、铁炭比为4∶1(体积比)、停留时间为6 h,COD去除率达到26.5%;絮凝试验最佳pH值为9.0,COD去除率达到1.5%。废水经过预处理后,COD去除率达到28.0%,出水COD质量浓度(下同)降至20 988 mg/L,ρ(BOD)5/ρ(COD)由0.28提高至0.41。预处理出水厌氧可生化性试验表明,当进水COD质量浓度为9 000 mg/L左右时,容积负荷(COD)为1.0 kg/(m3.d),出水COD质量浓度降低至2 100 mg/L左右,COD去除率达到75.0%。说明该制药废水经过预处理后可生化性显著提高,为后续的生化处理创造了有利条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号