首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
注入水中悬浮油滴能够严重堵塞低渗透油藏储层,造成渗透率下降,导致注水难、采油难。开展悬浮油滴对低渗透储层伤害规律的研究对提高油田注水效果有着重要的指导作用。以6种不同的粒径的悬浮油滴在5种不同浓度条件下,分别对安塞低渗透岩心进行室内流动实验、解堵实验。结果表明:在岩心平均喉道直径3.097μm、渗透率(2.96~3.73)×10-3μm2条件下,注入一定浓度c、一定粒径d悬浮油滴溶液后,渗透率变小,产生了堵塞。其中当d≤3.16μm时,与粒径相比,注入液浓度对堵塞起主导作用。大量油滴能够贯穿岩心,解堵效果较好,堵塞形式为贯穿性堵塞;当d4.175μm时,与浓度相比,粒径对堵塞起主导作用,油滴无法通过岩心,解堵效果较差,堵塞形式为浅部堵塞;当3.16μmd≤4.175μm,注入液浓度和粒径共同作用,极少油滴能够贯穿岩心,解堵效果最差,堵塞形式为贯穿性堵塞向浅部堵塞的过度阶段。建议安塞油田注入水中油滴指标采用c≤20 mg/L,且d≤4.175μm。  相似文献   

2.
压敏效应对低渗透油田开发的影响   总被引:6,自引:0,他引:6  
认为低渗透油田开发难度大的主要原因之一在于渗透率较低 .为弄清渗透率与压力的关系 ,以实验为基础 ,利用油田天然岩心模拟油田开发过程 ,研究压力的变化对岩心渗透率的影响 ;分析了渗透率的压力敏感性特征以及低渗透油田开发中存在的压敏效应 .指出随着开发过程的进行 ,地层压力逐渐下降 ,进而因油藏压力的降低所诱发的渗透率的压力敏感性伤害将不可避免 ,最终导致的渗透率损失对低渗透油田开发的影响是巨大的 .研究表明因压敏效应的存在 ,在井壁附近地层渗透率值只占供液边界处渗透率值的 45 %左右 ;当地层压力下降 5 MPa时 ,产量下降可达 1 3%左右 .  相似文献   

3.
压敏效应以低渗透油田开发的影响   总被引:9,自引:0,他引:9  
认为低渗透油田开发难度大的主要原因之一在于渗透率较低,为弄清渗透率与压力的关系,以实际为基础,利用油田天然岩心模拟油田开发过程,研究压力的变化对岩心渗透率的影响;分析了渗透率的压力敏感性特征及低渗透油田开发中存在的压敏效应,指出随着开发过程的进行,地层压力逐渐下降,进而因油藏压力的降低所诱导的渗透率的压力敏感性伤害将不可避免,最终导致的渗透率损失对低渗透油田开发的影响是巨大的,研究表明因压敏效应的存在,在井壁附近地层渗透率值只占供液边界处渗透率值的45%左右;当地层压力下降5MPa时,产量下降可达13%左右。  相似文献   

4.
针对低渗透油田在注水开发过程中注入压力高、压力传导慢等问题,室内进行了表面活性剂相对渗透率和天然岩心降低注入压力等实验研究。实验结果表明,在水驱基础上,天然岩心注入浓度为0.5%的NS—1表面活性剂后,后续水驱压力降低25%以上,降压效果明显。根据油水相对渗透率曲线,在油水两相径向稳定渗流条件下,对表面活性剂增注效果、段塞尺寸与增注量的关系等进行了预测。  相似文献   

5.
 回注水中的悬浮颗粒能严重堵塞储层,造成渗透率下降,导致安塞油田注水难、采油难。为了提高注水效果,急需确定安塞油田合理的回注水悬浮颗粒指标。以5 种不同的粒径的悬浮颗粒在3 种不同浓度条件下,分别对安塞天然岩心进行室内流动实验。结果表明:岩心渗透率开始随着悬浮颗粒溶液的注入缓慢下降,达到一定注入量后,能够较长时间处于某一平稳值;悬浮颗粒溶液浓度ρ>2.0 mg/L,渗透率损失大于30%;ρ≤1.0 mg/L且粒径d<0.730 μm,渗透率损失小于30%;1.0 mg/L<ρ<2.0 mg/L,且d<0.730 μm,渗透率损失有大于30%,也有小于30%,由浓度与粒径二者共同作用;0.730 μm≤d≤ 2.100 μm,渗透率损失大于30%。各油田回注水时,颗粒粒径范围区间应尽量小,其平均值应与储层的平均孔喉相差较大;安塞低渗透油藏注入悬浮颗粒溶液ρ<1.0 mg/L,d<0.730 μm。  相似文献   

6.
 注入水中悬浮颗粒能够严重堵塞油藏储层, 造成渗透率下降, 导致注水难、采油难。开展悬浮颗粒对储层伤害规律的研究, 对提高油田注水效果有着重要的指导作用。以5 种不同粒径的悬浮颗粒分别在3 种不同浓度溶液条件下, 对天然岩心进行室内流动实验。将粒径与喉道直径之比定义为匹配度, 流出液浓度与注入液浓度之比定义为相对浓度。结果表明:在岩心平均喉道直径0.94 μm、水测渗透率0.137×10-3~0.235×10-3 μm2条件下, 注入悬浮颗粒溶液后, 渗透率变小, 产生了堵塞。其中当匹配度小于0.777 时, 相对浓度大于0, 即部分颗粒能够贯穿岩心, 发生贯穿性堵塞;当匹配度大于0.777 时, 相对浓度为0, 即颗粒无法贯穿岩心, 发生浅部堵塞;在匹配度接近0.777 时, 为由贯穿性堵塞向浅部堵塞过渡阶段, 堵塞最严重。注入量与堵塞程度有较好的线性关系。建议油田在达到配注量的同时, 尽量减小注入水悬浮颗粒浓度, 保证悬浮颗粒粒径范围集中且匹配度远离临界值。  相似文献   

7.
注入水中的固相颗粒直接影响低渗透砂岩油藏的注入压力和储层伤害程度。研究了3 种注入水(所含固相颗
粒累积粒度分布达到90% 时所对应粒径分别为1.24,5.05,9.91µm)的注入性和对油相渗透率的伤害程度,并考察其
对采收率的影响。结果表明:渗透率小于1.000 mD 的岩芯,注入水中固相颗粒的累计粒度分布达到90%(D90)的粒径
大于1.00 µm 时,严重影响了其注入性;在渗透率大于1.000 mD 的岩芯中,3 种注入水均具有较好的注入性。随着固
相颗粒D90 粒径的增大,岩芯油相渗透率的伤害程度增大,水驱采收率降低;随着岩芯渗透率的增加,较大粒径的颗粒
堵塞岩芯中小孔隙的油流通道,降低了水驱波及能力。结合固相颗粒D90 粒径的渗透率伤害率图版,岩芯渗透率大于
10.000 mD 时,注入水中的颗粒D90 粒径可以适当放宽到5.00µm。  相似文献   

8.
通过地层水、无稠化剂压裂液、破胶液三种流体在岩心上进行滤失实验,研究不同液体滤失进入岩心后对储层渗透率伤害程度以及在不同返排压力下,储层渗透率恢复能力.研究结果表明致密气藏压裂过程中含水饱和度增加引起的气相渗透率的降低是储层伤害的主要机理,破胶液中悬浮微粒的存在,在一定程度上影响储层的渗流能力.返排实验表明增加产生压差,能部分地恢复储层的渗流能力,但是远远不能恢复到原始渗流能力.  相似文献   

9.
超低渗透油藏活性酸酸化增注技术研究   总被引:1,自引:0,他引:1  
受储层物性及注入方式的影响,镇北、华庆油田部分井投注后达不到配注要求.依据对超低渗欠注区块储层物性及目前注水现状的分析,通过室内实验研究了酸液配方体系,并对施工工艺进行了优化.所研制的酸液体系可使岩心的渗透率提高30%;通过酸液驱替可以有效消除注水对岩心造成的伤害,渗透率得以恢复.15口井现场酸化增注试验措施有效率达到93.3%,平均注水压力下降2.9 MPa,平均单井日增注量15 m3,取得了较好的增注效果.  相似文献   

10.
龙虎泡低渗透油田聚表二元复合驱实验研究   总被引:1,自引:0,他引:1  
针对龙虎泡低渗透油田水驱开发效果差、采收率低等特点,开展了聚合物和表面活性剂二元复合驱在低渗透油藏适应性的室内评价实验.注入性实验表明,相对分子量为2 200万的FP-3聚合物注入渗透率46.45×10-3μm2的岩心未发生堵塞,具有良好的注入选择性及封堵选择性.驱油实验表明,聚合物和表面活性剂可分别提高低渗透岩心驱油效率10%和20%,且表面活性剂容易注入,可降低注入压力.在聚合物和表面活性剂不同段塞组合实验中,两者分段塞注入的方式优于单独注入表面活性剂或将两者混合后注入的方式,其中先注聚合物后注入表面活性剂的段塞组合方式最好,可提高采收率17.74%.因此,对于非均质性较弱的低渗透油田,可采用聚表二元复合驱技术,先注入聚合物降低储层的非均质性,后注入表面活性剂启动低渗区的剩余油.  相似文献   

11.
低渗透超前注水储层油水分布   总被引:2,自引:0,他引:2  
通过压汞实验、CT孔隙扫描实验分析了储层的微观孔隙结构特征,应用岩心实验、微观模型实验研究了超前注水过程中油水分布特征。通过研究得出,三塘湖储层的微观非均质性较强,超前注水会使储层的油水分布发生明显变化。随着超前注水压力和超前注水时间的增加,储层非均质性变强,注入水沿渗透率较高的层位窜流,产生微观指进现象,导致超前注水生产后油井含水率上升快。因此,在非均质性较强的低压、低渗油藏超前注水过程中,应合理优化超前注水压力与加压时间,减少注入水窜的发生。  相似文献   

12.
裂缝性低渗透油藏渗流规律实验研究   总被引:1,自引:0,他引:1  
对某油田断块含天然裂缝的低渗透储层渗流特征进行了实验研究。本实验在常规渗流实验岩心夹持器末端增加了一套回压控制装置,渗流实验过程中,通过给岩心施加不同的回压,模拟了储层在变压条件下的流体渗流情况。得到了裂缝性低渗透储层岩心水相渗透率随回压的变化曲线。实验结果表明,裂缝的存在对低渗透储层的渗流特征有明显的改造,裂缝开启前,储层渗流可以看作是基质岩石渗流,裂缝对渗流的影响不大;裂缝开启后,由于其渗流能力较强,将发挥主要的渗流通道作用。  相似文献   

13.
低渗透储层水锁伤害机理核磁共振实验研究   总被引:5,自引:2,他引:3  
客观准确地评价低渗透储层的水锁伤害是入井流体优选、增产改造措施和水锁防治解除措施合理运用的基础.对孔隙介质中水的赋存状态、储层伤害原因、黏土吸水伤害和水锁伤害微观机理进行了深入分析;利用低磁场核磁共振T2谱技术,结合常规流动实验手段,对同一性质岩心开展了黏土吸水伤害和水锁伤害实验,提出了水锁伤害核磁共振实验评价方法.通过实验,准确给出了水锁伤害程度;建立了束缚水增加量与黏土吸水伤害程度、可动水相滞留量与水锁伤害程度之间的对应关系;从而对引起水锁伤害的原因做出更精确的判断,实现了对水锁伤害的客观评价.  相似文献   

14.
低渗透岩石渗透率与有效围压关系的实验研究   总被引:4,自引:0,他引:4  
为研究低渗透岩石的流固耦合渗流规律,采用FDES-641驱替评价系统对采自长庆油田的砂岩岩样进行实验和分析。实验结果表明:低渗透岩石渗流过程中存在明显的流固耦合效应。随着有效围压的增加,岩样的渗透率逐步下降,当有效围压开始卸载,岩心的渗透率逐步得到恢复,但不能恢复到原始数据;低渗透岩石渗透率与有效围压之间的关系可以用一元二次多项式来描述;岩样渗透率变化的原因主要缘自在有效围压作用下岩石孔隙的变形特性。  相似文献   

15.
将岩心分析数据与测井信息相结合,直接利用或构建渗透率测井响应敏感参数,采用多元线性回归分析建模方法,研究建立了鄂尔多斯盆地研究区长61低孔低渗储层渗透率测井解释模型。依据泥质含量参数特征,对两种不同岩性特征的储层分类进行渗透率测井响应敏感参数多元线性回归分析,分别建立渗透率测井解释模型,对应于研究区两类不同的沉积微相特征。结果表明,分类建立的模型测井解释渗透率与岩心实测渗透率一致性良好,满足研究区解释精度要求。因此,在沉积微相背景约束条件下,对研究区储层选择合理的测井参数进行多元线性回归分类建立渗透率测井解释模型在研究区低孔低渗储层中可以达到较好的应用效果。  相似文献   

16.
渤南油田属低渗透油藏,目前回注水水质不合格,悬浮物、细菌等超标,钙镁离子含量高,结垢严重,引起注水量下降,注水压力上升.针对渤南油田污水水质情况及注水水质要求,开展了油田污水生化/NF处理实验研究.采用气浮、生物接触氧化结合膜过滤工艺,污水经处理后油质量浓度低于0.5 mg/L,SRB、悬浮物检测不出,钙镁离子质量浓度降至8 mg/L以下.在达到A1级标准基础上,有效解决了回注水结垢问题.  相似文献   

17.
基于井间动态连通性计算低渗油藏窜流通道   总被引:1,自引:1,他引:0  
低渗透油藏窜流通道的普遍发育造成注水开发效果变差。为此,提出了基于低渗透油藏井间动态连通性研究定量计算窜流通道的方法。利用井间连通性模型计算得到注采井间连通系数将由注水井注入、窜流通道产出的未起到驱油效果的无效循环水劈分到各注采方向,进而定量计算出各注采方向上窜流通道的体积和渗透率等物理参数。现场应用结果表明:该方法可有效描述低渗透油藏的窜流通道,为调剖措施的实施提供指导,具有一定的矿场应用价值。  相似文献   

18.
王雅春 《科学技术与工程》2011,11(1):138-141,145
通过实验模拟地层在不同上覆压力下,孔隙度、渗透率的变化,研究低渗透储层的应力敏感性。其在增压过程中孔隙度和渗透率随着压力的增加而明显降低;在压力降低或撤除后,由于造成了岩石应力敏感性损害,孔隙度和渗透率不能恢复到原始的状态。低渗透储层应力敏感性的影响因素包括上覆压力的大小、加压次数、岩石覆压时间长短和流体饱和度的影响,在开发低渗透油田时应注意保持合理的生产压差、开采速度和降压方式。该研究为低渗透油藏的开发提供了理论依据。  相似文献   

19.
利用低渗透油田注水井的地质和动态统计资料,建立多元回归统计数学模型,采用逐步选择因素的后退法,求解最优化回归预测方程,对影响吸水量的各因素按作用效果显著程度进行了排序,利用水井资料对所得到的最优化回归方程进行了检验。结果表明,水井连通度是影响水井吸水量最主要因素,储层渗透率次之。  相似文献   

20.
不同油藏条件下相渗曲线分析   总被引:5,自引:4,他引:1  
阳晓燕 《科学技术与工程》2012,12(14):3340-3343
通过室内一维物理模拟实验,结合现场实际生产资料,开展不同油藏条件下一维恒 速水驱实验,对比不同油藏条件下油水相对渗透率曲线、特征点,分析相对渗透率曲线特征、束缚水饱和度、残余油饱和度及水相端点值的变化规律,研究结果表明:①对于稠油油藏虽然不同粘度的相渗曲线形态略有不同,但整体表现为油相相对渗透率高,水相相对渗透率非常低(水相相对渗透率端点值多数低于0.1),等渗点靠右,等渗区面积小的特点;②对于低渗透油藏,整体表现为束缚水饱和度和残余油饱和度都非常高,等渗区面积较窄,油相相对渗透率下降急剧、水相相对渗透率较高的特点。通过相渗曲线的特征可以定性地判断储层性质,为现场施工措施提供合理的指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号