首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
压敏效应以低渗透油田开发的影响   总被引:9,自引:0,他引:9  
认为低渗透油田开发难度大的主要原因之一在于渗透率较低,为弄清渗透率与压力的关系,以实际为基础,利用油田天然岩心模拟油田开发过程,研究压力的变化对岩心渗透率的影响;分析了渗透率的压力敏感性特征及低渗透油田开发中存在的压敏效应,指出随着开发过程的进行,地层压力逐渐下降,进而因油藏压力的降低所诱导的渗透率的压力敏感性伤害将不可避免,最终导致的渗透率损失对低渗透油田开发的影响是巨大的,研究表明因压敏效应的存在,在井壁附近地层渗透率值只占供液边界处渗透率值的45%左右;当地层压力下降5MPa时,产量下降可达13%左右。  相似文献   

2.
低渗透油藏储集层岩石本身的特性决定了油藏较易受压力敏感性影响。油藏在弹性开发过程中,由于只依靠天然能进行开采,对地层没有能量补充;地层的孔隙度、渗透率等性质很容易受到压力敏感的影响。通过岩心实验,表明低渗透油藏岩心的渗透率随围压变化而变化,呈指数变化趋势,并通过油藏数值模拟软件(ECLIPSE)进行模拟计算,分析压力敏感性对低渗透油藏的影响。  相似文献   

3.
大庆低渗透油田扶余油层超前注水实验   总被引:2,自引:2,他引:0  
为研究大庆低渗透油田扶余油层超前注水过程中渗透率级差对采收率的影响和超前注水开发效果不佳的原因,通过人造长岩心超前注水驱油室内模拟实验,确定了合理地层压力水平和渗透率级别对采收率的影响程度。结果表明:大庆油田扶余油层超前注水过程中,合理地层压力水平应当保持在原始地层压力的120%左右。在合理地层压力保持水平下,超前注水较同步注水初期产油量高,采油速度高,无水采油期短,且对含水率上升具有一定抑制作用;同时,超前注水实施过程中,储层渗透率越低,超前注水对采收率提升的效果越好。  相似文献   

4.
低渗透岩石具有较为明显的压力敏感性。在分析传统的CMS300全自动覆压压力敏感实验研究特点的基础上,充分考虑岩石受压缩的时间效应,对胜利渤南油田不同类型的低渗透岩石进行了系统的CMS300随机覆压和控时覆压的敏感性测试,获得了多种低渗透岩石压敏特征曲线,并探讨了岩石压敏特征与岩石本身属性的关系。结果表明,随机覆压下,储层物性随围压的增加呈单调圆滑下降的趋势;控时覆压下,岩石气测渗透率随覆压的变化呈台阶式变化;粘土总量和有无方解石胶结对低渗透岩石压敏效应的影响更为显著。  相似文献   

5.
低渗透岩石压敏特征研究   总被引:11,自引:1,他引:10  
低渗透岩石具有较为明显的压力敏感性。在分析传统的CMS300全自动覆压压力敏感实验研究特点的基础上,充分考虑岩石受压缩的时间效应,对胜利渤南油田不同类型的低渗透岩石进行了系统的CMS300随机覆压和控时覆压的敏感性测试,获得了多种低渗透岩石压敏特征曲线,并探讨了岩石压敏特征与岩石本身属性的关系。结果表明,随机覆压下,储层物性随围压的增加呈单调圆滑下降的趋势;控时覆压下,岩石气测渗透率随覆压的变化呈台阶式变化;粘土总量和有无方解石胶结对低渗透岩石压敏效应的影响更为显著。  相似文献   

6.
王雅春 《科学技术与工程》2011,11(1):138-141,145
通过实验模拟地层在不同上覆压力下,孔隙度、渗透率的变化,研究低渗透储层的应力敏感性。其在增压过程中孔隙度和渗透率随着压力的增加而明显降低;在压力降低或撤除后,由于造成了岩石应力敏感性损害,孔隙度和渗透率不能恢复到原始的状态。低渗透储层应力敏感性的影响因素包括上覆压力的大小、加压次数、岩石覆压时间长短和流体饱和度的影响,在开发低渗透油田时应注意保持合理的生产压差、开采速度和降压方式。该研究为低渗透油藏的开发提供了理论依据。  相似文献   

7.
启动压力梯度对压裂井生产动态影响研究   总被引:1,自引:0,他引:1  
低渗透油藏往往不遵循达西定律,具有启动压力现象,常规的方法难以实现该类油藏的高效开发.通过室内实验,研究了大庆肇源油田不同渗透率岩心启动压力梯度,建立了启动压力和渗透率关系式,并应用黏度和渗透率组合参数来判断流体的渗流形态;应用数值模拟的方法研究了启动压力梯度对压裂油井日产量、累积产量、含水率、采出程度、地层压力分布等的影响.结果表明,启动压力梯度对压裂油井各项生产参数的影响很大.因此,在低渗透油藏的开发过程中不能忽略启动压力梯度的影响.  相似文献   

8.
 低渗透气藏开发过程中普遍存在非线性渗流,研究非线性渗流对采收率影响对于合理开发此类气藏具有一定意义。选取塔里木某低渗透气藏的岩心开展不同渗透率和含水饱和度条件下的非线性渗流实验,实验表明低渗透气藏存在启动压力梯度和较强的应力敏感性。渗透率越低、含水饱和度越高,启动压力梯度越大,应力敏感性越强,非线性渗流特征越明显。非线性渗流对低渗透气藏采收率有较大影响。启动压力梯度越大、应力敏感性越强的气藏,最终地层废弃压力越高,采收率越低。在低渗透气藏开发部署时,尽量寻找较高渗透率和较低含水饱和度的储层,优先开发。同时,井网加密调整、储层改造、降低含水饱和度也是提高低渗透气藏采收率的有效途径。  相似文献   

9.
致密砂岩储层近井区启动压力梯度的存在原因探讨   总被引:1,自引:0,他引:1  
研究了低渗透油气藏近井区启动压力梯度的存在原因.以安塞油田王窑区致密砂岩储层为例1,在对岩心进行渗透率与有效压力实验的基础上,研究了渗透率对有效压力的敏感性、渗透率的大小与有效压力的敏感性关系.研究表明,存在层理缝或微裂缝时,渗透率在低有效压力下变化特别明显.岩心在净围压的重复变化过程中均具有一定的塑性;在低渗透油气藏近井区储集层的岩石形变在矿场上明显存在,这可能是导致近井区启动压力梯度的主要原因,某些开采特征与流动现象可用近井区岩石形变来解释.通过致密储层压力敏感性机理分析,建立了具有启动压力梯度特征的渗流理论模型.  相似文献   

10.
超低渗透油层温度-应力-渗流的流固耦合效应   总被引:1,自引:0,他引:1  
目的在于研究由于注入流体的温度过低而引起超低渗透油层渗透率和孔隙结构变化的温度-应力-渗流的流固耦合效应.实验选用了长庆超低渗油藏的岩心,在恒压和各种不同温度下测定了岩心的渗透率.实验结果表明:①随着温度的降低,岩心的渗透率不断降低,大约2/3的超低渗岩心在25℃左右时会出现裂缝直至断裂.在25~15℃温度段内,流体通过超低渗透多孔介质的渗透率对温度最敏感,其变化程度最大(要么降低的幅度最大,要么出现裂缝),且这种变化是部分不可逆的.②随着温度的升高,岩心的渗透率稍有增加,当温度再开始下降时,渗透率下降,温度下降到原始地层温度时渗透率的值比初始值要大,但增加的幅度不大.因此,注水开发低渗透和超低渗油田时应尽量避免冬季投产和施工作业.在正常的开发状态下应在合理的生产压差下,合理选择或保持适当的注水温度,尽量降低冷伤害对开发效果的影响,保持油藏的稳产和高产.  相似文献   

11.
随致密气藏开发进行,地层压力降低产生应力敏感从而影响气水两相渗流。通过非稳态气驱水实验模拟致密气藏地层条件下气水两相渗流过程,研究了苏里格气田某区块盒8致密储层应力敏感对气水两相渗流的影响。结果表明:围压增大,气水渗流能力降低、共渗区减小、束缚水饱和度增大但总出水量变化不大,由于气相和液相应力敏感存在差异,气相相对渗透率增大、水相相对渗透率减小。  相似文献   

12.
目的 通过研究异常高压变形介质油藏的开发动态特征,探讨该类油藏的开发模式。方法以尕斯库勒油田E3异常高压变形介质油藏为例,应用变形介质渗流理论,结合渗透率地层条件下模拟试验及典型井组生产动态数据分析,研究异常高压下变形介质油藏开发特征及合理开发模式。结果异常高压变形介质油藏表现出不同于常规油藏的开发动态特征,在开发过程中随着地层压力的下降,介质弹塑性形变,渗透率大幅度下降,不同结构的岩石发生不同程度的弹塑性形变;当关井恢复压力时油藏渗透率有所恢复,但随地层压力的进一步下降,介质发生不可逆形变,渗透率将逐渐下降,从而使油井产能降低;变形介质油藏具有特殊的弹塑性驱动渗流指示曲线特征,油井产量随压差增加到一定极限后,再增加压差产量随之下降。结论变形介质油藏的开发应尽可能在原始地层压力下开采,在合理生产压差下开发。  相似文献   

13.
异常高压气藏储层应力敏感性研究   总被引:2,自引:1,他引:2  
异常高压气藏开采过程中,由于流体的产出,使储层岩石受力发生改变并使储层岩石发生弹塑性变形;而弹塑性变形反过来又影响到储层的孔隙度和渗透率,因此,研究储层孔隙度和渗透率应力敏感性具有极其重要的意义.本文基于岩石力学的基本理论,推导出异常高压气藏岩石变形规律及变形方程,以此理论推导指导试验,将理论研究与实验规律相结合,在模拟地层条件下,对实际岩心样品进行了储层应力敏感性实验研究.实验研究表明,该方法能精确的描述储层孔隙度和渗透率应力敏感性,实验结果与理论推导结果完全吻合,进一步证明了理论推导的正确.进而探讨了异常高压气藏储层应力敏感性对气藏开发的影响.  相似文献   

14.
特低渗储层应力敏感性及对油井产量的影响   总被引:9,自引:0,他引:9  
对长6某特低渗储层进行了系统的应力敏感性实验研究.研究表明:该特低渗储层岩石的应力敏感程度在26%~80%的范围,岩石的渗透率越低,应力敏感性越强;原始条件下地下渗透率明显小于地面渗透率,它们之间有较好的线性关系;储层岩石应力敏感伤害后,储层岩石的渗透率不能立即恢复,最终渗透率恢复率在68.6%~100.0%,岩石渗透率越高,渗透率恢复值越大;当岩石的渗透率小于0.5×10-3μm2时,储层岩石的应力敏感性明显增强.模型预测表明,当地层压力降低5MPa时,该储层岩石的应力敏感性对油井产量的影响在8.6%~35.7%,渗透率越低下降幅度越大.  相似文献   

15.
为研究吉木萨尔页岩储层人工裂缝渗透率在油藏生产过程中的变化规律,基于新疆吉木萨尔页岩油藏储层条件,开展不同闭合压力、不同岩性、不同铺砂浓度对裂缝渗透率影响实验.结果 表明:随着油藏开发程度不断加深,人工裂缝渗透率逐渐降低,主要分为两个阶段,且不同铺砂浓度存在差异.第一阶段:高铺砂浓度下闭合压力小于20 MPa,低铺砂浓度下闭合压力小于15 MPa,支撑剂嵌入和破碎共同导致渗透率急剧降低,降低幅度分别为60.16%、82.21%.第二阶段:高铺砂浓度下闭合压力20 ~35 MPa,低铺砂浓度下闭合压力15 ~35 MPa,仅发生支撑剂破碎使得渗透率下降相对较慢.同时,由于泥岩强度较粉砂岩强度更大,支撑剂嵌入深度较低,使得在同等条件下,泥岩储层比砂岩储层的人工裂缝渗透率更大.  相似文献   

16.
低渗透气藏由于普遍具有低孔、低渗的特征,导致其气水渗流具有非线性特征和流态的多变形,进而储层流体的渗流不再遵循经典的达西定律。结合岩石本体有效应力相关理论,在前人的基础上,推导了低渗透气藏水平井产能公式,该公式综合考虑了压力敏感效应和启动压力梯度的影响,更加接近于实际气藏,更能准确的对低渗透气藏水平井产能进行评价。实例计算表明:在低渗透气藏水平井产能分析中,必须考虑压力敏感效应和启动压力梯度;且随着压力敏感系数和启动压力梯度的增大,水平井产量降低。水平井产能随着生产压差的增大而增大,但气井产能指数却是先快速上升,然后再缓慢降低。因此对于低渗透气井而言,存在一个生产压差的最优值。  相似文献   

17.
异常高压页岩气藏生产中表现为初期产量迅速递减的特征,这种情况一方面和页岩气低渗透压裂投产的方式 有关,另一方面可能和储层及压裂缝应力敏感有关。分析了页岩气井储层及压裂缝应力敏感特征,认为储层和压裂缝 在力学性质上有较大差别,应分别进行考虑,采用数值模拟方法计算了考虑应力敏感和配产大小对最终采气量的影 响,结果表明,储层的应力敏感对页岩气的生产影响较小,压裂缝应力敏感影响相对较大,如果考虑渗透率应力敏感只 和压力有关,则配产大小对最终采气量影响不大,而假设高产下具有更强的渗透率应力敏感衰竭曲线,则初期配产对 最终采气量影响较大,并采用图形诊断法进行分析,证实了这种情况下初期低配产气井生产潜能更大,研究成果可以 用于高压页岩气井的合理配产优化。  相似文献   

18.
变形介质气藏在开发过程中,孔隙压力随流体的流出而下降,使储层内外压差增大,孔隙受到压缩而体积缩小,孔隙度和渗透率随之降低,极大地影响到此类气藏的开采。主要阐述了多孔介质发生变形的类型,并从多孔介质的微观物理特性(包括物质组成,单元体类型及它们之间的接触关系、排列方式和胶结方式)来分析对其发生变形的影响。还通过实验,分析了变形介质的孔隙体积、孔隙度和渗透率随压力而发生的变化规律。实验表明,随着净围压的升高,孔隙体积缩小,孔隙度和渗透率降低。与孔隙度相比较,渗透率受压力变化的影响更明显。因而,在变形介质气藏的开采过程中,保持气藏内部的原始压力对稳产、高产及延长气藏的开采时间有重要意义.  相似文献   

19.
为了建立油气开采过程中,储层渗透率随温度、孔隙压力变化而改变的定量评价模型,假定岩石仅产生弹性变形,根据多孔介质弹性力学理论,推导出岩石孔隙体积和尺寸的应力-应变关系;再应用管流模拟渗流,根据Kozeny-Carman方程得到渗透率随温度、孔隙压力变化的定量计算模型.针对常规渗透率测试存在的问题,改进实验方法,模拟真实储层温度压力条件,开展了岩心力学和渗透率同步实验.研究结果表明,模型计算的渗透率损失与实验测试结果吻和良好.模型适用于裂缝不发育的致密岩石在弹性变形范围内的渗透率定量计算.随着油气采出,孔隙压力下降,导致渗透率减小,而地层温度降低,导致渗透率增大,这两方面对渗透率的影响具有相互抵消的作用.因此,由于温度、孔隙压力变化引起的储层岩石渗透率总体变化很小,一般不超过±2%.  相似文献   

20.
宋春涛 《科学技术与工程》2012,12(25):6319-6326
利用应力敏感实验得到了低渗透油藏残余渗透率表达式;理论推导了考虑动态渗透率变化的启动压力梯度表达式,在此基础上,提出拟动力函数的概念得到了应力敏感和启动压力综合作用下的油水相渗曲线。然后利用Eclipse软件,通过引入ROCKTABH和Threshold Pressure关键字实现了考虑启动压力和应力敏感效应的低渗透油藏数值模拟研究方法。研究结果表明:考虑启动压力和应力敏感效应后,由于油相流动能力变差,水相渗流能力相对增强,残余油饱和度升高的影响,注采井间压力梯度较大,含油饱和度下降较慢,无水采收期较短,含水率上升速度较快,最终采收率较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号