首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 为了解隧道内液化天然气(LNG)管道泄漏爆炸事故的发展规律,以某实际工程为例,运用计算流体动力学方法建立隧道内LNG管道泄漏爆炸模型,分别以3种不同的边界条件对LNG泄漏爆炸过程进行了数值模拟计算。针对隧道两端为固壁和设泄压结构2种情况下的爆炸过程,通过数值模拟得到了3种不同泄漏强度条件下隧道内LNG泄漏爆炸峰值超压情况,并以此为依据判定其破坏性。结果表明,隧道两端为固壁或设泄压结构时,在泄漏强度最小及最大2种情况下爆炸形式均为爆燃,会对隧道内设施产生较严重破坏;泄漏强度居中的情况下,则会发生爆燃转爆轰过程,破坏力极强,应避免此种情况的发生。  相似文献   

2.
深圳LNG接收站泄漏风险模型预评价研究   总被引:1,自引:0,他引:1  
针对深圳LNG接收站中的LNG储罐、BOG压缩机、高压输送泵、再冷凝器、气化器、计量站及高压外输管线等易产生泄漏的设备及工艺过程,建立泄漏风险预评价模型及可辨识的泄漏风险源,然后预测接收站内各类设备泄漏事故发生频率,选用对照标准法、道氏(Dow’s)火灾爆炸指数法和SAFETI软件3种评价方法,分别从泄漏扩散后果、火灾后果、爆炸后果3个方面进行模拟计算和分析,同时进行了火灾爆炸指数计算.  相似文献   

3.
针对管道中天然气的泄漏,尤其是含硫集输管道的泄漏将对周围环境造成极大的威胁,对平坦地区含硫化氢天然气管道泄漏扩散进行了数值模拟。模拟分析发现:静风条件下,天然气在大气中自由扩散稳定后,压力、速度和浓度分布基本对称,喷口附近、喷口垂直向上区域以及接近地面区域的硫化氢浓度很高,属于高危险区域;有风条件下,气体扩散范围增大,风不仅对污染物起输送作用,还起稀释扩散作用,但在地面附近影响效果并不明显,而随高度的增加,其效果将不断增强;在无风情况下,喷射区域基本在泄漏口正上方,而有风时,喷射区域发生弯曲;危险区域随着风速的增大而减小,静风时,其范围最大。模拟得出天然气管道泄漏点外扩散的规律能够为实际安全生产和应急抢险提供较好的参考依据。  相似文献   

4.
王凯  王尽飞 《科技资讯》2011,(13):106-106
泄漏是天然气供应系统中最典型的事故,LNG火灾和爆炸绝大部分都是由泄漏引起的,研究LNG泄漏的相关问题对于LNG安全具有重要价值.本文主要介绍LNG泄漏后的扩散规律及危害特性,并在此基础上给出相应的计算和处置方法,为类事故的应急处置提供参考.  相似文献   

5.
以某光纤企业汇流排丙烷气体瞬时泄漏为例,对重气云扩散模式及其影响因素进行研究,选用盒子模型进行扩散模拟,求得浓度随扩散时间、泄漏点距离的变化规律、产生健康危害的下风向距离以及造成的危害区范围.经计算可知,距泄漏点下风向33.11m即可达到爆炸浓度下限,丙烷云团瞬时泄露扩散45s后能造成409.23m的人员健康危害区.经过分析,企业汇流排实际布局不能满足气体泄漏事故发生时的安全要求.此结果可为发生事故时作业人员确定事故毒害危险区及疏散范围提供合理性依据.  相似文献   

6.
以计算流体力学软件FLACS为工具,研究了某大型化纤生产企业原料储罐区发生泄漏并引发蒸气云爆炸事故的后果影响,并对事故扩展过程中罐区内的多米诺效应风险进行预测.研究表明,FLACS可应用于复杂生产及存储区域内的气体扩散爆炸过程的模拟研究,并对其爆炸风险进行定量评估,对多米诺效应风险进行可靠预测;该模拟场景下,爆炸火焰高度约为40 m,火焰顶部呈蘑菇云状,火焰广度覆盖中间管廊和泄漏储罐,爆炸产生的火球直径约为20 m,靠近点火源一侧的管壁温度和泄漏储罐罐壁表面温度均超过2 000℃,爆炸产生的最大超压为2.9 kPa,不足以对邻近装置产生破坏,但爆炸产生的高温会引发泄漏、池火、流淌火和浓烟等多米诺事故,应在实际建设中加强针对性消防控制措施.  相似文献   

7.
液化石油气(LPG)是常见的易燃易爆化学品,采用PHAST程序中的UDM模型验证数值模拟的可行性,以控制变量法研究同一泄漏孔径下温度、环境和泄漏口方向对事故后果的影响规律.结果表明,随着温度升高,LPG泄漏扩散距离变远、闪火影响区域扩大,但喷射火辐射量随之降低,特别是在150~200 m距离时衰减明显;表面粗糙度值越低,LPG泄漏扩散越远,爆炸冲击波传播的较远,但表面粗糙度对喷射火热辐射强度影响较小;泄漏口方向对事故的影响较大,泄漏口水平方向的泄漏距离最远,泄漏口方向垂直向下时,容易形成液池,泄漏口向上时,扩散距离以及闪火和喷射火的影响范围最小.   相似文献   

8.
地下空间中压燃气管线泄漏极易引发重大火灾爆炸事故。该文参考真实地下空间建筑结构建立物理模型,采用CFD模拟仿真计算用户端中压燃气泄漏扩散和空间爆炸情形,结合地下空间安全性能的特点,从韧性角度分析事故后果对地下空间安全性能的影响。研究认为,在设定的泄漏源和空间环境下,泄漏2和210 s是2个重要的临界时间点, 2 s时地下空间发生泄漏的熟食操作间内燃气浓度逐渐达到爆炸下限, 210 s时地下空间大厅区域燃气浓度逐渐达到可燃浓度下限。熟食操作间内燃气爆炸超压约为12 kPa,大厅顶部1.0 m厚度燃气爆炸超压约为24 kPa,前者对地下空间结构稳定性影响较小,后者对建筑物结构有一定损坏,空间对事故灾害的承受和吸收能力。地下空间商品耐火性差可能引发火灾事故,加深对空间安全韧性的影响。燃气泄漏爆炸事故影响地下空间的承受能力、吸收能力和恢复能力,据此提出燃气事故对地下空间安全韧性的表征曲线。认为空间安全韧性是燃气泄漏时长的函数,事故后果从形成危险域突变为爆炸、爆燃的关键是遇到点火源。事故后果越严重恢复时间越长、成本越高,恢复后空间性能优于事故之前。提出提升空间韧性的关键措施依次为及时关停泄漏源、强化通风避免形成可燃蒸气云、控制点火源、增设泄压面积、提高空间防火性能。  相似文献   

9.
艾飞 《科技咨询导报》2010,(34):80-80,82
综合SFPE推荐的火球热辐射计算模型,结合热辐射伤害破坏准则,分析了LNG储罐区发生沸腾液体扩展蒸气爆炸的危险性,应用该方法计算分析了某LNG站发生沸腾液体扩展蒸气爆炸时的伤害破坏范围。根据计算分析结果,液化天然气罐区一旦发生沸腾液体扩展蒸气爆炸事故将对周围的人员及设备带来毁灭性的破坏,应采取措施杜绝液化天然气泄漏事故的发生,同时,提出了人员及装备的安全距离。  相似文献   

10.
加氢站氢气事故后果量化评价   总被引:1,自引:0,他引:1  
定量研究了加氢站内物理爆炸、闪火、射流火焰和气云爆炸四种典型氢气事故后果,考察储氢压力、泄漏孔径以及风速大小对事故后果的影响规律.研究结果表明:物理爆炸和气云爆炸的有害影响距离最大,可分别作为瞬时泄漏和连续泄漏的决定性后果;物理爆炸、闪火、气云爆炸和射流火焰的有害影响距离均随着储氢压力和泄漏孔径的增大而增大,但在各个方向上的增幅表现出不同的规律;在大风天气条件下,加氢站氢气泄漏事故可造成更为严重的危害.  相似文献   

11.
高压氢气泄漏并发生点火是氢火灾事故的核心场景,也是氢安全研究的基本内容。该文对高压氢气泄漏后立即点火、延迟点火以及有防护墙存在时的延时点火3种场景进行了数值模拟仿真,分析了点火时间、防护墙对温度和超压的影响。结果表明:氢气泄漏后在喷口处立即点燃会形成射流火焰,该过程不会产生明显的超压;泄漏一段时间后再进行点火,将由点火中心产生压力波并向外传播,并随着与点火中心距离的增大,最大超压降低,燃烧稳定后形成的射流火焰与立即点火时基本一致;防护墙有效削弱了压力波及火焰向墙后方的传播,墙后方的超压及温度明显降低。因此,合理设置防护墙可以缩小危险范围,缩短安全距离。  相似文献   

12.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:12,自引:2,他引:10  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

13.
陈克勤  李海山  曹世昌 《科技信息》2009,(19):74-74,142
在天然气生产过程中,天然气泄漏是引发人员中毒、火灾、爆炸事故的主要因素,而对天然气生产场所进行有毒、有害气体检测,是防止因天然气泄漏而导致二次事故或次生事故产生的主要方法。本文针对重庆气矿“三高”气井的特点,通过分析天然气生产场站气体检测仪配置使用现状和故障原因.提出了相应的气体检测仪安全配置对策。  相似文献   

14.
针对天然气管道站场中天然气的泄漏扩散对安全生产造成的问题,开展了天然气管道站场中天然气泄漏扩散规律研究.采用专业软件模拟的方法,使用FLACS进行模拟,设置边界条件进行求解,研究不同风速、不同风向及不同泄漏速率对天然气泄漏扩散的影响,并结合天然气行业相关标准对天然气管道站场内可燃性气体位置进行优化.研究结果表明,泄漏速...  相似文献   

15.
基于计算流体力学对船舱CO2泄漏扩散进行模拟,探究了泄漏速度、阻碍物高度和倾斜角对泄漏扩散的影响.结果表明:CO2泄漏速度越大,向船舱底部沉积愈明显,气体扩散的范围越大,人逃生时间越短;增加阻碍物的高度可显著增加对船舱CO2泄漏的阻碍作用;向左倾斜45°的阻碍物阻碍效果最佳,向右倾斜45°的阻碍物,下风向高浓度CO2区域最大,人员逃生越困难.模拟结果可为船舱CO2泄露事故预防提供参考.  相似文献   

16.
为了研究浮式液化天然气(FLNG)生产储卸装置的甲板上部区域储罐发生泄漏后的扩散后果,建立了FLNG装置甲板上部区域的泄漏扩散模型,并利用计算流体力学(CFD)技术对其进行了液化天然气(LNG)重气泄漏的扩散模拟,得到了扩散后的区域影响结果,模拟结果满足重气扩散过程的堆积理论和低压卷吸理论.结果表明:该模型和模拟方法能够在一定程度上反映LNG泄漏扩散的真实物理情况,当离生活区最远储罐的前表面发生泄漏后,其泄漏范围不会扩散到生活区,对生活区没有影响;而当位于FLNG中部附近的储罐前表面发生泄漏后,在动力区建筑物的影响下,生活区背风处会形成低压空腔区,且该区域的LNG浓度较高.  相似文献   

17.
天然气储罐一旦发生泄漏后,会对人体及周围造成损害,以西安天然气厂作为对象,针对泄漏扩散、火灾爆炸主要的事故类型等,从分析影响天然气泄漏的因素出发,通过高斯烟羽模型和TNT当量法,计算天然气储罐一旦发生泄漏,产生的危害范围。研究认为参照天然气爆炸上下限以及人可接触浓度阈值三个值为分界点,距离泄漏源下风向313 m,甲烷浓度达到了对人体有害的阈值,距离泄漏源下风向135 m处,天然气浓度处于爆炸下限,以爆炸源为中心,距其440 m以内的范围属于死亡区。高斯烟雨模型极大程度的考虑了影响扩散的因素,TNT当量法是计算爆炸能量的通用方法,得到的计算具有很高的合理度,可作为气体泄漏扩散危害的计算工具。  相似文献   

18.
厂区天然气泄漏扩散的数值模拟研究   总被引:1,自引:0,他引:1  
根据危险性气体空间泄漏扩散的特点,对厂区天然气等危险性轻质气体泄漏扩散运动进行了数值模拟,着重研究了大气风向风速、泄漏射流方向和泄漏时间对危险性轻质气体(天然气)空间泄漏扩散浓度场和危险性区域的影响.其中大气主导风的风速对气体扩散浓度和扩散危险性区域有很大的影响,如等值线图模拟的条件下,在x方向上,风速v=0.5 m.s-1比v=5.0 m.s-1条件下危险性区域大155 m.  相似文献   

19.
对控制室爆炸载荷的研究主要包括建筑设计载荷与概率爆炸载荷两个方面,并未充分考虑输入参数与计算模型的不确定度对输出结果的影响,采用GDS系统对气云进行探测时,难以保证设计指标的保守性。基于不确定度理论,通过分析气体泄漏扩散以及气云爆炸过程,提出控制室等受体爆炸载荷的安全系数计算分析方法。选取对爆炸后果影响较大的输入参数,利用拉丁超立方抽样法确定输入样本,基于高斯扩散理论提出等价云体积计算模型,通过多能法的应用得到气云爆炸的冲击波超压作为输出,分别利用蒙特卡洛方法与Sobol指数法计算其不确定度与参数敏感度,进而得到安全系数。结果表明:应用于某LNG罐区,依据实际工况选取不确定性参数及其取值区间后,可定量得到泄漏场景下的安全系数;考虑安全系数后,可增强受体爆炸载荷分析的保守性,有效提高对事故的防控能力,并为GDS系统探测提供依据。  相似文献   

20.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:3,自引:0,他引:3  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号