首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用国产CDR-4P型差动热分析你测得DSC曲线,利用积分法和微分法逻辑选择确定了β-烷氧烷基乙基三氯化锡配合物热分解的最可几数学机理函数F(α)=[-ln(1-α)]^2/3;f(a)=3/2(1-a)[-ln(1-a)]^1/3,从而计算出指前因子和活化能分别为logA=25.6和E=293.4kJ/mol,logA=24.7和E=278.6kJ/mol。  相似文献   

2.
含硫油品储罐自燃火灾事故的根本原因是罐壁铁锈被含硫油品腐蚀生成具有自燃倾向性的腐蚀产物,这些腐蚀产物自燃而引起油罐火灾。通过硫化试验模拟储罐内壁氢氧化铁硫化产物,对其进行热分析试验,应用非模型法和"主曲线法"确定氢氧化铁硫化产物的动力学机制。结果表明,氢氧化铁硫化产物在氧化反应阶段的热重曲线可分为两个主要的失重阶段:第一失重阶段符合随机成核和随后生长反应动力学反应机制,其模型函数为g(a)=[-ln(1-a)]0.673 1,平均活化能E=124.25 kJ/mol,指前因子A=4.45×1013s-1;第二失重阶段符合相边界动力学反应机制,模型函数g(a)=1-(1-a)0.45,平均活化能E=218.42 kJ/mol,指前因子A=1.07×108s-1。  相似文献   

3.
CaCO3分解动力学的热重研究   总被引:3,自引:0,他引:3  
在升温速率为5-30K/min的范围内,利用热天平对平均粒为13.4μm的CaCO3进行了分解过程中的实验研究,应用等转化率法,在不假定机理函数的情况下,得到了CaCO3分解的活化能E=105.24kJ/mol。该值与前人对于平均粒径D=13μm的CaCO3分解,以控制化学反应的多步随机成核机理(机理函数G(α)=[-ln(1-α)]^1/3)所得到的活化能E=105.01kJ/mol非常一致。  相似文献   

4.
在水溶液中用硫酸铜和邻苯二甲酸氢钾反应合成了Cu(C8H5O4)2·2H2O,并得到了该配合物的单晶体,通过元素分析、IR光谱、TG-DTA对产物进行鉴定.以Achar法、Coats-Redfern法对TG曲线数据进行非等温动力学拟合,得到第一步脱水反应的动力学方程为dα/dt=Aexp(-E/RT)2(1-α)[-1n(1-α)]1/2,活化能E=135.0kJ/mol,指前因子lg(A/s-1)=14.89;第二步热分解的动力学方程为:dα/dt=Aexp(-E/RT)[-ln(1-α)]-1,活化能E=289.7kJ/mol,指前因子lg(A/s-1)=26.86.  相似文献   

5.
通过热重法(TG-DTG)、差示扫描量热法(DSC)、X射线衍射(XRD)技术研究了固态物质ZnC2O4·2H2O-NiC2O4·2H2O机械混合物(摩尔比3:2)在空气中热分解的过程.TG-DTG的曲线表明:其热分解过程TG曲线中4个明显的台阶与理论失重相吻合.XRD结果表明:样品在500℃煅烧生成为较好晶型的ZnO-NiO混合物.用Kissinger-Akahira-Sunose(KAS)法和Ozawa法求取Ea,用热分析动力学三因子求算的比较法判断出可能的机理函数.ZnC2O4和NiC2O4热分解的活化能分别为175.69~176.48 kJ/mol、220.28~200.93 kJ/mol,ZnC 2O4和NiC2O4分解反应过程可能遵循的机理函数微分形式分别为f(α)=3(1-α)[-ln(1-α)]2/3和f(α)=2(1-α)[-ln(1-α)]1/2;积分形式分别为g(α)=[-In(1-α)]1/3和g(α)=[-ln(1-α)]1/2,都属于随机成核和随后生长型机理函数(Avrami-Erofeer),Am,其调节因子m=3、2.  相似文献   

6.
通过热重法(TG-DTG)、差示扫描量热法(DSC)、X射线衍射(XRD)技术研究了固态物质ZnC2O4·2H2O-NiC2O4·2H2O机械混合物(摩尔比32)在空气中热分解的过程.TG-DTG的曲线表明其热分解过程TG曲线中4个明显的台阶与理论失重相吻合.XRD结果表明样品在500℃煅烧生成为较好晶型的ZnO-NiO混合物.用Kissinger-Akahira-Sunose(KAS)法和Ozawa法求取Ea,用热分析动力学三因子求算的比较法判断出可能的机理函数.ZnC2O4和NiC2O4热分解的活化能分别为175.69~176.48 kJ/mol、220.28~200.93 kJ/mol,ZnC 2O4和NiC2O4分解反应过程可能遵循的机理函数微分形式分别为f(α)=3(1-α)[-ln(1-α)]2/3和f(α)=2(1-α)[-ln(1-α)]1/2;积分形式分别为g(α)=[-In(1-α)]1/3和g(α)=[-ln(1-α)]1/2,都属于随机成核和随后生长型机理函数(Avrami-Erofeer),Am,其调节因子m=3、2.  相似文献   

7.
FeS诱发含硫油品自燃的事故受到了业界的日益关注。通过在不同升温速率(2,5,8,10,15℃/min)下的热分析实验,应用模型和非模型拟合研究了FeS的热分解动力学机理,结果表明:FeS受热氧化是FeS与氧气物理吸附、化学吸附和化学反应过程,对FeS的模型拟合结果不稳定,可靠性较差;采用等转化率法得到FeS热分解的表观活化能E=(135.81±8.27)kJ/mol;通过Satava-Sestak方程确定了FeS的受热分解符合成核和生长模型函数A2:g(α)=[-ln(1-α)]1/2,其表观活化能E=148.43kJ/mol,表观指前因子A=3.82×109 K/s。  相似文献   

8.
用数值分析法对镁钙砂碳酸化反应热重试验数据进行平滑处理,减小了因镁钙砂的显微结构特性导致的热重试验微商数据离散程度对动力学计算的影响,提高了线性拟合相关系数.用模式配合法确定了镁钙砂碳酸化反应动力学"三因子",结果表明:反应前期(α<33%)表观活化能Ea为31.9 kJ/mol,指前因子A为0.23 s-1,最可几机理可用随机成核、随后生长模式函数Avrami-Erofeev方程描述,其微分表达式为n=2的Avrami-Erofeev方程,f(α) =(1-α)[-ln(1-α)]-1/2;反应后期 (α>33%)表观活化能Ea为101.8 kJ/mol,指前因子A为6.4×102,最可几机理可用三维扩散模式函数D3描述,其微分表达式为Jander方程,f(α) = 3 (1-α)2/3/(2 (1-(1-α)1/3).  相似文献   

9.
以CoCl2.6H2O和(NH4)3PO4.3H2O为原料,在适量表面活性剂聚乙二醇-400的存在下,先在室温下研磨反应混合物进行固相反应,然后将反应混合物在80℃下保温陈化4h,接着用水洗去混合物中可溶性的无机盐,然后在110℃下烘干2h,得到(NH4)3CoPO4.H2O晶体材料。用XRD,IR,SEM及TG/DTA对产物进行表征。采用热重差热法(TG/DTA)分析研究该产物的热分解过程。结果表明,(NH4)3CoPO4.H2O在105~800℃有2个显著的失重平台,这2个失重过程机理函数所对应的活化能、频率因子(LnA)及热分解机理机理函数分别为:(a)E=97.83kJ/mol,lnA=23.26s-1,[ln(1-a)];(b)E=87.36kJ/mol,lnA=15.60s-1,1-(1-a)1/2。  相似文献   

10.
本文利用普适积分法、微分法来拟合求解50nm和500nm铁粉在10K?min-1、20K?min-1、30K?min-1和40K?min-1升温速率下的燃烧动力学参数,并确定纳米铁粉燃烧反应的动力学模型和最概然机理函数。30种机理函数的计算结果表明,50nm铁粉的活化能和指前因子的数值范围分别为90~130KJ?mol-1和103~108s-1,500nm铁粉的活化能和指前因子的数值范围分别为160~220KJ?mol-1和106~1011s-1,纳米铁粉的燃烧反应动力学模型为随机成核和随后生长,机理符合Avrami-Erofeev方程,最概然机理积分函数为G(α)=[-ln(1-α)]3,微分函数为f(α)= (1-a)[-ln(1-a)]-2/3。  相似文献   

11.
在不同升温速率条件下,用热分析法研究了碱式碳酸锌[2ZnCO3.3Zn(OH)2]在氮气氛中的热分解过程与热分解动力学.确定了碱式碳酸锌的热分解温度Ti,0=471.3 K;由K issinger与Coot-Redfem两种方法求得热分解反应的表观活化能E=177.1 kJ.mol-1.用13种常见的固体热分解机理函数对热分解过程进行计算,确定了碱式碳酸锌热分解是一级随机成核和随后生长机理,对应的机理函数为g(a)=-ln(1-a).  相似文献   

12.
本文提出一个热分析反应动力学的验证方程式。用热重法(TG)结合微商热重法(DTG)与等温实验,从判断固相反应机理入手,研究了常压下碳酸氢钠热分解反应的动力学与机理。实验表明,其反应属于Avrami-Erofeev的核生成与核成长为控制步骤的A_(1.5)机理。动力学方程式为:da/dt=7.57×10~8×e~(-86.6×10~3)J/(RT){3/2(1-a)[-ln(1-a)]~(1/3)}。表观活化能E为86.6kJ·mol~(-1),频率因子A为7.57×10~8s~(-1),两者补偿关系为:lnA=0.287E-4.44。  相似文献   

13.
合成了高氯酸钐和咪唑、DL-α-丙氨酸混配配合物晶体.经傅立叶变换红外光谱、化学分析和元素分析确定其组成为[Sm(C3H7NO2)2(C3H4N2)(H2O)]C lO4)3采用TG-DTG技术研究了配合物在流动高纯氮气(99.99%)气氛中的非等温热分解动力学,运用微分法(Achar-B rind ley-Sharp和K issinger法)和积分法(Satava-Sastak和Coats-Redfern法)对非等温动力学数据进行分析,求得分解反应的表观活化能E=132.3 kJ.mol-1,动力学方程式为dα/dt=1.750×109(1-α)[-ln(1-α)]1/3exp(-132.3×103/RT).  相似文献   

14.
给出了不定方程组a2x^2-a1y^2=a2-a1,a3y^3-a2z^2=a3-a2有正整数解的一个充分必要条件以及当系数(a1,a2,a3)满足条件(a1,a2,a3)=1且a1a2+1∈N^2或a2-a1=1时求该不定方程组的非平凡正整数解的一个方法,该方法可以在计算机上用“迭代”算法实现。  相似文献   

15.
热分析动力学的多升温速率等温法及其应用   总被引:2,自引:0,他引:2  
提出了多升温速率等温法确定热分析动力学可能的机理函数g(α);用迭代的等转化率法求出较为可靠的活化能Ea;在Ea和g(α)的基础上计算出指前因子A.用该法对二水草酸镍(NiC2O4·2H2O)脱水反应的热分析动力学三因子进行了研究,得出Ea为96.55 kJ/mol;A为7.746×107~9.415×107s-1;其对应的机理函数为随机成核和随后生长(Avrami-Erofeer),调节函数Am,其积分形式g(α)=[-ln(1-α)]1/m和微分形式f(α)=m(1-α)[-ln(1-α)]1-1/m,调节因子m=1.55~1.70.用该法求算动力学三因子,结果可靠,重现性较好,具有一定的可比性.  相似文献   

16.
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式,Er[(AB)^m]≤Er(A^mB^m),hr[(AB)^m]≤(A^mB^m),Er[A^aB^1-a]≤[Er(A]^a[Er(B)]^1-A,HR[A^aB^1-a]≤[hr(A)]^a[hr(B)]^1-a.其中,m是任意正整数,0≤a≤1,Er(A),hr(A)分别为半下定矩阵A的r阶初等和完全对称函数。当A,B都是正定矩阵时,有E^2r(A#B)≤Er(A)Er(B),h^2r(A#B)≤hr(A)hr(B),其中,A#B=A^1/2BA^-1/2)^1/2A^1/2称为A与B的几何平均矩阵。  相似文献   

17.
以TGA为手段,研究了壳聚糖、β-环糊精、淀粉在氮气环境下的非等温热降解动力学,采用Owaza和Friedman方法,计算了三种物质的降解动力学活化能,并使用Coats-Redfern法计算了三种物质的反应机理函数和指前因子. 结果表明:壳聚糖、β-环糊精、淀粉降解活化能分别是147.1,129.1和148.3kJ/mol,机理函数是-ln(1-α),[-ln(1-α)]2/5和[-ln(1-α)]1/2;lnA为7.7838,8.6499和7.8688min-1.  相似文献   

18.
用3十八烷基甲基溴化铵(TOAB)和蒙脱土(MMT)制备有机蒙脱土(OMMT),采用热重差热(TGDTA)法研究OMMT热分解动力学。结果表明:OMMT的热分解发生在170~530℃之间,通过Agrawal积分方程线性拟合,以线性相关系数为判据,得到OMMT热分解反应的机理函数为G(a)=a-(1-a)ln(1-a),活化能E=13.62 kJ/mol,频率因子A=1.92 min-1,动力学补偿效应方程为lnA=0.410 3E-4.442 8;根据热分解动力学求得的DTA曲线形状因子表明,OMMT的DTA曲线对称性差,这与其TGDTGDTA中的DTA曲线吻合。  相似文献   

19.
The guidelines for assessing the apparent activation energies of gas/solid reactions have been proposed based on the experimental results from literatures. In CO2 free inlet gas flow, CaCO3 decomposition between 950 and 1250 K with thin sample layer could be controlled by the interracial chemical reaction with apparent activation energy E = (215±10) kJ/mol and E = (200±10)kJ/mol at T = 813 to 1020 K, respectively. With relatively thick sample layer between 793 and 1273 K, the CaCO3 decomposition could be controlled by one or more steps involving self-cooling, nucleation, intrinsic diffusion and heat transfer of gases, and E could vary between 147 and l90 kJ/mol. In CO2 containing inlet gas flow (5%-100% of CO2), E was determined to be varied from 949 to 2897 kJ/mol. For SrCO3 and BaCO3 decompositions controlled by the interfacial chemical reaction, E was (213±15) kJ/mol (1000-1350 K) and (305+15) kJ/mol (1260-1400 K), respectively.  相似文献   

20.
讨论了线性迭代系统si(x)=aix+ci,i=1,2,3在满足开集条件时, 产生的广义Cantor集E与F,并获得了E与F的s维Hausdorff测度的精确值,即H^s(E)=1,Hs(F)=[c3/1-a3-c1/1-a1]^s,其中s满足a1^s+a2^s+a3^s=1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号