首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen-vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3?×?10(7) such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.  相似文献   

2.
Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schr?dinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.  相似文献   

3.
研究光与物质相互作用是腔量子电动力学的一个重要方向.早在20世纪50年代,黄昆先生就提出了固体环境中的光子与晶格连续作用的时间演化图像,并指出光子-声子时间上连续不断的相互转化会在物质中形成声子极化激元波,从理论上计算了声子极化激元波的色散关系.Hopfield把这种图像推广到半导体环境中的光子-激子作用上.随后人们在微腔中实现了单原子、单量子点激子的真空拉比振荡.随着半导体微腔生长和微纳加工工艺的提高,激子极化激元的凝聚、超流、涡旋等宏观量子态被实验证明.通过控制微腔结构和光场调控的手段,人们进一步实现了对宏观量子态的相干调控.有机半导体、钙钛矿、二维半导体等新材料体系展现了极大的激子束缚能,有望实现室温量子器件的制备.微腔激子极化激元的研究进入了黄金时代.本文首先从激子极化激元的基本图像入手,详细介绍激子极化激元的概念、色散关系以及常见的激子极化激元体系.其次,总结了研究微腔激子极化激元的材料体系和实验方法,详细介绍了平板微腔和微纳材料自构型微腔的工作原理和具体实例,以及共焦显微荧光光谱和角分辨荧光光谱.第三,对激子极化激元的量子调控进行了总结.详细介绍了激子极化激元的重要宏观量子态以及通过微纳加工和光场调控的方式对宏观量子态的操控.具体分析了两个量子态操控的实例,包括氧化锌超晶格中多重量子态的制备以及凝聚体的参量散射过程.第四,对新型材料中激子极化激元的研究进行了总结,包括二维半导体、有机半导体和钙钛矿.最后,对本文进行总结,并且从理论、实验的角度分别预测了该领域的发展趋势.  相似文献   

4.
Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity--which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes--has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.  相似文献   

5.
6.
Colombe Y  Steinmetz T  Dubois G  Linke F  Hunger D  Reichel J 《Nature》2007,450(7167):272-276
An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.  相似文献   

7.
应用J-C模型与相互作绘景中的密度算符理论,研究了2个相互纠缠的理想腔体中2个二能级Rydberg原子与2个纠缠耗散腔场单光子共振相互作用过程中的量子退相干,得到了2个二能级原子的退相干因子.通过对数值计算,讨论了耗散系数和原子-光场相互作用耦合系数对原子态的量子相干性的演化特性的影响.结果表明,耗散系数和原子-光场相互作用强度不仅影响原子态的量子相干性的演化的振荡性,而且影响其演化的周期性.  相似文献   

8.
Ourjoumtsev A  Kubanek A  Koch M  Sames C  Pinkse PW  Rempe G  Murr K 《Nature》2011,474(7353):623-626
Single quantum emitters such as atoms are well known as non-classical light sources with reduced noise in the intensity, capable of producing photons one by one at given times. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability of a single atom to produce quadrature-squeezed light, which has fluctuations of amplitude or phase that are below the shot-noise level. However, such squeezing is much more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, which is several orders of magnitude larger than in typical macroscopic media. This produces observable quadrature squeezing, with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.  相似文献   

9.
Wave-particle duality of C(60) molecules   总被引:6,自引:0,他引:6  
Quantum superposition lies at the heart of quantum mechanics and gives rise to many of its paradoxes. Superposition of de Broglie matter waves' has been observed for massive particles such as electrons, atoms and dimers, small van der Waals clusters, and neutrons. But matter wave interferometry with larger objects has remained experimentally challenging, despite the development of powerful atom interferometric techniques for experiments in fundamental quantum mechanics, metrology and lithography. Here we report the observation of de Broglie wave interference of C(60) molecules by diffraction at a material absorption grating. This molecule is the most massive and complex object in which wave behaviour has been observed. Of particular interest is the fact that C(60) is almost a classical body, because of its many excited internal degrees of freedom and their possible couplings to the environment. Such couplings are essential for the appearance of decoherence, suggesting that interference experiments with large molecules should facilitate detailed studies of this process.  相似文献   

10.
J-C模型中原子的自发辐射与量子纠缠态   总被引:2,自引:2,他引:2  
通过对旋波近似下J-C模型中的二能级原子与单模场相互作用体系的研究,得到激发态原子将演化为场和原子的耦合叠加态--纠缠态,原子偶极矩的期待值总是零,但偶极矩的起伏恒等于一个不为零的常数,因此,原子的自发辐射是由偶极矩的涨落引起的,并非原子偶极矩振荡造成的结果,具体研究这种纠缠态的性质得出:原子与场纠缠体系的信息熵和纠缠度随时间做周期性的振荡,并且和原子与场间的耦合系数及失谐程度有关,量子态在非纠缠态与纠缠态之间变化,在微小失谐量时,量子态将长时间停留在纠缠态。  相似文献   

11.
Quantum superposition of distinct macroscopic states   总被引:1,自引:0,他引:1  
Friedman JR  Patel V  Chen W  Tolpygo SK  Lukens JE 《Nature》2000,406(6791):43-46
In 1935, Schrodinger attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors, nanoscale magnets, laser-cooled trapped ions, photons in a microwave cavity and C60 molecules, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise.  相似文献   

12.
本文利用压缩算符的性质及相干态的性质,推导了一个量子动力学模型的退相干因子,并且实现了宏观极限下的退相干,随后,我们发现这种系统仪器的耦合对退相干有显剧的影响.  相似文献   

13.
Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics to quantum computing. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented.  相似文献   

14.
考察了依赖强度耦合的广义Jaynes-Cummings模型.假定初始时光场是相干态、原子处于相干迭加作者发现,在相位匹配条件下,初始场的相干态展示周期性的复原效应.同时,还证明了在描写光场的相干性方面,光场的量子相位与量子相干性是并协的.?烫  相似文献   

15.
Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.  相似文献   

16.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.  相似文献   

17.
Quantum decoherence is a central concept in physics. Applications such as quantum information processing depend on understanding it; there are even fundamental theories proposed that go beyond quantum mechanics, in which the breakdown of quantum theory would appear as an 'intrinsic' decoherence, mimicking the more familiar environmental decoherence processes. Such applications cannot be optimized, and such theories cannot be tested, until we have a firm handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate and testable predictions for environmental decoherence in molecular-based quantum magnets. Experiments on molecular magnets have successfully demonstrated quantum-coherent phenomena but the decoherence processes that ultimately limit such behaviour were not well constrained. For molecular magnets, theory predicts three principal contributions to environmental decoherence: from phonons, from nuclear spins and from intermolecular dipolar interactions. We use high magnetic fields on single crystals of Fe(8) molecular magnets (in which the Fe ions are surrounded by organic ligands) to suppress dipolar and nuclear-spin decoherence. In these high-field experiments, we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally, and there are no other visible decoherence sources. In these high fields, we obtain a maximum decoherence quality-factor of 1.49?×?10(6); our investigation suggests that the environmental decoherence time can be extended up to about 500 microseconds, with a decoherence quality factor of ~6?×?10(7), by optimizing the temperature, magnetic field and nuclear isotopic concentrations.  相似文献   

18.
The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity and the mechanical modes of a trapped atom or macroscopic solid. Quantized interaction between two motional modes of an individual trapped ion has been achieved by coupling through optical fields, and entangled motion of two ions in separate locations has been accomplished indirectly through their internal states. However, direct controllable coupling between quantized mechanical oscillators held in separate locations has not been realized previously. Here we implement such coupling through the mutual Coulomb interaction of two ions held in trapping potentials separated by 40?μm (similar work is reported in a related paper). By tuning the confining wells into resonance, energy is exchanged between the ions at the quantum level, establishing that direct coherent motional coupling is possible for separately trapped ions. The system demonstrates a building block for quantum information processing and quantum simulation. More broadly, this work is a natural precursor to experiments in hybrid quantum systems, such as coupling a trapped ion to a quantized macroscopic mechanical or electrical oscillator.  相似文献   

19.
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.  相似文献   

20.
Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7?±?0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号