首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

2.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

3.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

4.
积分中值定理的推广   总被引:7,自引:0,他引:7  
将Riemann积分中值定理中函数f(x)所满足的条件加以改进,得到如下积分中值定理:若函数f(x)是闭区间[α,b]上有原函数的可积函数,函数g(x)在[α,b]上可积且不变号,则存在ζ∈(α,b),使得∫α^b(x)g(x)dx=f(ζ)∫α^bg(x)dx。√a。a  相似文献   

5.
在多元函数积分学中,讨论重积分与累次积分的关系是十分重要的。它给出了计算重积分的一个简便的、行之有效的方法。在勒贝格积分理论中,有一条著名的富比尼定理,这个定理可以叙述为: (1)设f(x,y)是矩形I=〔a,b〕×〔c,d〕上的勒贝格可积函数,则在〔a,b〕上除去一个零测度集以外,f(x,y)作为y的函数是勒贝格可积的,而且函数(?)在〔a,b〕上勒贝格可积(在上述零测度集上,φ(x)可任意定义),同时以下等式成立:  相似文献   

6.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

7.
(一)众所周知,积分第一中值定理是下面的定理若函数f(x)在闭区间[a,b]上连续,函数g(x)在[a,b]上可积,且不变号,则在[a,b]上至少存在一点ζ,使得(?)注意,上述定理中的ζ∈[a,b],文[1]在不改变其条件的情况下,将结论加强为ζ∈(a,b),这种  相似文献   

8.
本文主要系构造一辅助函数,从而将哥西中值定理推广到n个函数。茲先讨论三个函数的情形。定理1 设函数f(x),φ(x),ψ(x)在闭区间[a,b]上连续,在开区间[a,b]上可微,则一定有这样—点c(a相似文献   

9.
证明“彐ξ∈(a,b),使f′(ξ)=0”是Rolle定理应用中重要题型,关键是寻找问题中的f(x),即作辅助函数f(x)。Lagrange中值定理也正是在找到这样的f(x)后利用Rolle定理来证明的。  相似文献   

10.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

11.
在研究Fourier级数的收敛性时,用到这样一个结论。黎曼引理若f(x)在〔a,b〕上可积,则(?)其证明可见〔1〕、〔2〕。本文将首先利用同〔1〕类似的方法证明更为广泛的结论(定理1、定理2),其次对瑕义积分的情况,也给出了类似的结论(定理3)。定理1 若g(x,y)在R:a≤x≤b,y_0-η相似文献   

12.
在《数学分析》中关于一元函数的最大(小)值问题,对闭区间上的连续函数有一个较简单的算法,但对开区间区的连续函数仅谈了一个开区间的可导函数在具有唯一驻点时判别它是否是取得最大(小)值点的一个方法(见参考文献[1],[2],[3],[4])。这个方法通常被称为“单峰,单谷定理”,本文以明确形式归纳为推论1。本文定理一将其推广到较为一般的形式。在此基础上本文定理二给出了“开区间上的连续函数在具有唯一极值备选点时,具有最大(小)值的充分必要条件”。这是本文的主要结果。设 f(x)在(a,b)内连续,而在(a,b)\{c},a0这个定理给出了任意区间的连续函数在具有唯一极值备选点时求函数最大或最小值的一个相当简单的算法(推论2)(如文中例题所示)。  相似文献   

13.
本文给出并论证了积分中值定理中的ξ,当 b→a~+时,将趋于(a,b)的中点,即·第一,二积分中值定理中的ξ分别有积分中值定理若函数 f(x)在区间[a,b]上连续,则在[a,b]上至少存在一点ξ,使得  相似文献   

14.
定积分的第二中值公式有下列三个定理给出的三种形式。定理1 假设函数f(x)在闭区间[a,b]上单调减小(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得定理2 假设函数f(x)在闭区间[a,b]上单调增加(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得  相似文献   

15.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

16.
提到中值定理,读者会想到罗尔、拉格朗日、柯西等微分中值定理及积分中值定理。文[1]中又提出了微分学中的一个结论(称为中值定理),表述如下:定理设函数 f(x),g(x)在[a,6]上连续,在(a,6)内有连续导数 f′(x),g′(x),g′(x)≠0,则存在ξ∈[a,b]使有  相似文献   

17.
波利亚曾提出并否定回答了与 L agrange中值定理有关的问题 :对于 y=f(x) ,x∈ (a,b) ,是否对任意的 ξ∈(a,b)都存在 x1 ,x2 ∈ (a,b) ,x1 <ξ相似文献   

18.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

19.
本文给出了几乎处处上半连续的函数族测度逼近几乎处处有限可测函数的一个充要条件,并由此给出几个直接结果。定义设f(x)是〔a,b〕上的可测函数,S是〔a,b〕上的可测函数族,称S测度逼近f(x)是指出任意ε〉0和δ〉0,存在g(x)∈S,满足 mE(|f(x)-g(x)|≥ε)〈δ,其中E(|f(x)-g(x)|≥ε)={x|x∈〔a,b〕,|f(x)-g(x)|≥ε},“m”为集合的测度符号。  相似文献   

20.
实变函数论中的菲赫金哥尔茨(?)定理是这样的: 若F〔f(x)〕对于所有绝对连续函数f(x)常为绝对连续函数,则F(x)满足李卜希兹条件。本文利用磨光函数的方法,使上述定理中f(x)的范围缩小为满足|f′(x)|≤1的函数,从而将菲赫金哥尔茨定理的条件大大减弱。随之可得出两个推论。现叙述如下: 定理若F〔f(x)〕对于所有满足|f′(x)|≤1的函数f(x)常为绝对连续函数,则F(y)(y∈〔a,b〕)满足李卜希兹条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号