首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Myoglobin-like aerotaxis transducers in Archaea and Bacteria   总被引:14,自引:0,他引:14  
Hou S  Larsen RW  Boudko D  Riley CW  Karatan E  Zimmer M  Ordal GW  Alam M 《Nature》2000,403(6769):540-544
Haem-containing proteins such as haemoglobin and myoglobin play an essential role in oxygen transport and storage. Comparison of the amino-acid sequences of globins from Bacteria and Eukarya suggests that they share an early common ancestor, even though the proteins perform different functions in these two kingdoms. Until now, no members of the globin family have been found in the third kingdom, Archaea. Recent studies of biological signalling in the Bacteria and Eukarya have revealed a new class of haem-containing proteins that serve as sensors. Until now, no haem-based sensor has been described in the Archaea. Here we report the first myoglobin-like, haem-containing protein in the Archaea, and the first haem-based aerotactic transducer in the Bacteria (termed HemAT-Hs for the archaeon Halobacterium salinarum, and HemAT-Bs for Bacillus subtilis). These proteins exhibit spectral properties similar to those of myoglobin and trigger aerotactic responses.  相似文献   

2.
The newly proposed alignment-free and parameter-free composition vector (CVtree) method has been successfully applied to infer phylogenetic relationship of viruses, chloroplasts, bacteria, and fungi from their whole-genome data. In this study we pay special attention to the phylogenetic positions of 56 Archaea genomes among which 7 species have not been listed either in Bergey’s Manual of Systematic Bacteriology or in Taxonomic Outline of Bacteria and Archaea (TOBA). By inspecting the stable monophyletic br...  相似文献   

3.
Frigaard NU  Martinez A  Mincer TJ  DeLong EF 《Nature》2006,439(7078):847-850
Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and distribution of proteorhodopsin genes in Archaea affiliated with the order Thermoplasmatales, in the ocean's upper water column. The genomic context and phylogenetic relationships of the archaeal and proteobacterial proteorhodopsins indicate its probable lateral transfer between planktonic Bacteria and Archaea. About 10% of the euryarchaeotes in the photic zone contained the proteorhodopsin gene adjacent to their small-subunit ribosomal RNA. The archaeal proteorhodopsins were also found in other genomic regions, in the same or in different microbial lineages. Although euryarchaeotes were distributed throughout the water column, their proteorhodopsins were found only in the photic zone. The cosmopolitan phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoprotein's lateral acquisition and retention, but constrain its dispersal to the photic zone.  相似文献   

4.
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA   总被引:10,自引:0,他引:10  
Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.  相似文献   

5.
古菌病毒     
古菌病毒的研究起步较晚,但发展很快。近年来,人们已经从热泉等特殊环境分离得到了数十种古菌病毒。来自热泉的古菌病毒表现出了极为独特、多样的形态学和基因组学特征,据此目前已经或正在建议建立7个病毒新科。已知的古菌病毒均属于双链DNA病毒,极端嗜热古菌病毒中绝大多数基因的功能尚不清楚。古菌病毒的研究不仅极大地丰富了人们对自然界病毒多样性的认识,还为探索病毒的起源与进化提供了重要启示。本文对古菌病毒的主要类群及特点作了简单介绍,并进一步探讨了病毒的起源与进化。  相似文献   

6.
High abundance of viruses found in aquatic environments   总被引:108,自引:0,他引:108  
O Bergh  K Y B?rsheim  G Bratbak  M Heldal 《Nature》1989,340(6233):467-468
The concentration of bacteriophages in natural unpolluted waters is in general believed to be low, and they have therefore been considered ecologically unimportant. Using a new method for quantitative enumeration, we have found up to 2.5 x 10(8) virus particles per millilitre in natural waters. These concentrations indicate that virus infection may be an important factor in the ecological control of planktonic micro-organisms, and that viruses might mediate genetic exchange among bacteria in natural aquatic environments.  相似文献   

7.
In this research, high voltage static electricity and ultraviolet technologies were integrated to an air purifying device which can be used to trap and kill airborne bacteria and viruses in central air-conditioning systems. An experimental platform was built to mimic the central air system, in which the efficacy of the newly built device was examined. In addition to the standard physical and chemical tests, bacteriophages were used to simulate airborne viruses in the experimental system. The bacteriophage suspension was aerosolized into the air with ultrasonic wave atomization. The result showed that more than 86% removal efficiency of micro-particles (<10 micron in diameter) were removed after the device was in operation in a building and more than 95% of bacteriophages in the experimental system. It is concluded that the integrated air purifier is suitable for controlling air quality and preventing virus transmission through the central air system.  相似文献   

8.
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.  相似文献   

9.
Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein.   总被引:30,自引:0,他引:30  
T G Boyer  M E Martin  E Lees  R P Ricciardi  A J Berk 《Nature》1999,399(6733):276-279
  相似文献   

10.
The oncoprotein large tumour antigen (LTag) is encoded by the DNA tumour virus simian virus 40. LTag transforms cells and induces tumours in animals by altering the functions of tumour suppressors (including pRB and p53) and other key cellular proteins. LTag is also a molecular machine that distorts/melts the replication origin of the viral genome and unwinds duplex DNA. LTag therefore seems to be a functional homologue of the eukaryotic minichromosome maintenance (MCM) complex. Here we present the X-ray structure of a hexameric LTag with DNA helicase activity. The structure identifies the p53-binding surface and reveals the structural basis of hexamerization. The hexamer contains a long, positively charged channel with an unusually large central chamber that binds both single-stranded and double-stranded DNA. The hexamer organizes into two tiers that can potentially rotate relative to each other through connecting alpha-helices to expand/constrict the channel, producing an 'iris' effect that could be used for distorting or melting the origin and unwinding DNA at the replication fork.  相似文献   

11.
Virus-specific effects of interferon in embryonal carcinoma cells   总被引:11,自引:0,他引:11  
T W Nilsen  D L Wood  C Baglioni 《Nature》1980,286(5769):178-180
Embryonal carcinoma (EC) cells are susceptible to infection by a variety of viruses, but do not become resistant to infection by Semliki Forest virus or vesicular stomatitis virus (VSV) on treatment with interferon. These observations have led to the conclusion that interferon does not induce an antiviral state in EC cells. We report here, however, that EC cells treated with interferon become resistant to infection by two picornaviruses and two ts mutants of VSV, whereas they remain sensitive to wild-type VSV, Sindbis and influenza virus infectin. These results suggest that a partial antiviral state is induced in EC cells by interferon and that the induced antiviral protein(s) interferes with the replication of specific viruses. A significant common feature of these viruses is their replication through structures containing double-stranded RNA (dsRNA).  相似文献   

12.
A mechanism for initiating RNA-dependent RNA polymerization   总被引:26,自引:0,他引:26  
Butcher SJ  Grimes JM  Makeyev EV  Bamford DH  Stuart DI 《Nature》2001,410(6825):235-240
  相似文献   

13.
MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloro- plast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demon- strated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred be- fore the evolution of land plants.  相似文献   

14.
Morphological and ecological complexity in early eukaryotic ecosystems.   总被引:18,自引:0,他引:18  
E J Javaux  A H Knoll  M R Walter 《Nature》2001,412(6842):66-69
Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.  相似文献   

15.
The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.  相似文献   

16.
Short interfering RNA confers intracellular antiviral immunity in human cells   总被引:133,自引:0,他引:133  
Gitlin L  Karelsky S  Andino R 《Nature》2002,418(6896):430-434
Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence-specific, highly conserved mechanism in eukaryotes. In plants, it serves as an antiviral defence mechanism. Animal cells also possess this machinery but its specific function is unclear. Here we demonstrate that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus. Pre-treatment of human and mouse cells with double-stranded, short interfering RNAs (siRNAs) to the poliovirus genome markedly reduces the titre of virus progeny and promotes clearance of the virus from most of the infected cells. The antiviral effect is sequence-specific and is not attributable to either classical antisense mechanisms or to interferon and the interferon response effectors protein kinase R (PKR) and RNaseL. Protection is the result of direct targeting of the viral genome by siRNA, as sequence analysis of escape virus (resistant to siRNAs) reveals one nucleotide substitution in the middle of the targeted sequence. Thus, siRNAs elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.  相似文献   

17.
古细菌与真核生物的早期进化   总被引:1,自引:0,他引:1  
在比较古细菌与细菌,真核生物分子水平上的差别基础上讨论了真核生物早期进化。像线粒体和叶绿体源于细菌内共生一样,细胞核也许是古细菌内共生进化的结果。  相似文献   

18.
Reinisch KM  Nibert ML  Harrison SC 《Nature》2000,404(6781):960-967
The reovirus core is an assembly with a relative molecular mass of 52 million that synthesizes, modifies and exports viral messenger RNA. Analysis of its structure by X-ray crystallography shows that there are alternative, specific and completely non-equivalent contacts made by several surfaces of two of its proteins; that the RNA capping and export apparatus is a hollow cylinder, which probably sequesters its substrate to ensure completion of the capping reactions; that the genomic double-stranded RNA is coiled into concentric layers within the particle; and that there is a protein shell that appears to be common to all groups of double-stranded RNA viruses.  相似文献   

19.
Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane cycles are very acidic. Here we describe an extremely acidophilic methanotroph that grows optimally at pH 2.0-2.5. Unlike the known methanotrophs, it does not belong to the phylum Proteobacteria but rather to the Verrucomicrobia, a widespread and diverse bacterial phylum that primarily comprises uncultivated species with unknown genotypes. Analysis of its draft genome detected genes encoding particulate methane monooxygenase that were homologous to genes found in methanotrophic proteobacteria. However, known genetic modules for methanol and formaldehyde oxidation were incomplete or missing, suggesting that the bacterium uses some novel methylotrophic pathways. Phylogenetic analysis of its three pmoA genes (encoding a subunit of particulate methane monooxygenase) placed them into a distinct cluster from proteobacterial homologues. This indicates an ancient divergence of Verrucomicrobia and Proteobacteria methanotrophs rather than a recent horizontal gene transfer of methanotrophic ability. The findings show that methanotrophy in the Bacteria is more taxonomically, ecologically and genetically diverse than previously thought, and that previous studies have failed to assess the full diversity of methanotrophs in acidic environments.  相似文献   

20.
Filamentous phage integration requires the host recombinases XerC and XerD   总被引:19,自引:0,他引:19  
Huber KE  Waldor MK 《Nature》2002,417(6889):656-659
Many bacteriophages and animal viruses integrate their genomes into the chromosomal DNA of their hosts as a method of promoting vertical transmission. Phages that integrate in a site-specific fashion encode an integrase enzyme that catalyses recombination between the phage and host genomes. CTX phi is a filamentous bacteriophage that contains the genes encoding cholera toxin, the principal virulence factor of the diarrhoea-causing Gram-negative bacterium Vibrio cholerae. CTX phi integrates into the V. cholerae genome in a site-specific manner; however, the approximately 6.9-kilobase (kb) CTX phi genome does not encode any protein with significant homology to known recombinases. Here we report that XerC and XerD, two chromosome-encoded recombinases that ordinarily function to resolve chromosome dimers at the dif recombination site, are essential for CTX phi integration into the V. cholerae genome. The CTX phi integration site was found to overlap with the dif site of the larger of the two V. cholerae chromosomes. Examination of sequences of the integration sites of other filamentous phages indicates that the XerCD recombinases also mediate the integration of these phage genomes at dif-like sites in various bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号