首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
A nano-crystal N-Zn/TiO2 anode film was prepared using a combined technology. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry characterizations showed that the two elements N and Zn were doped into nano-crystal TiO2 successfully. This resulted in a strong redshift in the UV-Visible spectrum. UV-Visible measurements showed that the light absorption of N719 and P3OT were complementary and covered the entire visible region. This led to a high utilization of visible light. Solar cells based on the N-Zn/TiO2 anode film were co-sensitized using P3OT and N719. The cells have a short-circuit current density of 7.91 mA/cm2, an open-circuit photovoltage of 0.659 V, and a photoelectric conversion efficiency of 2.64%. Also, the relationship among the N-Zn/TiO2-film anode’s electric structure, the dye’s LUMO, electrochemical impedance, and photoelectric conversion efficiency are discussed in the paper.  相似文献   

2.
Climate change and the consumption of non-renewable resources are considered as the greatest problems facing humankind.Because of this,photocatalysis research has been rapidly expanding.TiO2 nanoparticles have been extensively investigated for photocatalytic applications including the decomposition of organic compounds and production of H2 as a fuel using solar energy. This article reviews the structure and electronic properties of TiO2,compares TiO2 with other common semiconductors used for photocatalytic applications and clarifies the advantages of using TiO2 nanoparticles.TiO2 is considered close to an ideal semi- conductor for photocatalysis but possesses certain limitations such as poor absorption of visible radiation and rapid recombination of photogenerated electron/hole pairs.In this review article,various methods used to enhance the photocatalytic characteristics of TiO2 including dye sensitization,doping,coupling and capping are discussed.Environmental and energy applications of TiO2, including photocatalytic treatment of wastewater,pesticide degradation and water splitting to produce hydrogen have been summarized.  相似文献   

3.
AgSnO2 electrical contact materials doped with Bi2O3, La2O3, and TiO2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures. The electrical conductivity, density, hardness, and contact resistance of the AgSnO2/Bi2O3, AgSnO2/La2O3, and AgSnO2/TiO2 contact materials were measured and analyzed. The arc-eroded surface morphologies of the doped AgSnO2 contact materials were investigated by scanning electron microscopy (SEM). The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO2 contact materials were discussed. The results indicate that the physical properties can be improved and the contact resistance of the AgSnO2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures.  相似文献   

4.
本文采用密度泛函理论的平面波超软赝势方法研究了Zr 掺杂对锐钛矿型TiO2 电子结构和光学性质的影响, 计算了Zr 掺杂前后锐钛矿型TiO2 的电子态密度分布、能带结构、光吸收系数等性质, 定性地分析了掺杂前后电子结构和光学性质的变化. 研究结果表明: Zr 掺杂锐钛矿型TiO2, 导致带隙减小, 掺杂后在360~400nm 附近的光吸收系数增大, TiO2 的吸收带产生红移, 增强了TiO2 的光催化活性, 理论与实验结果 一致.  相似文献   

5.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

6.
Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.  相似文献   

7.
In this study,TiO2@MgO core-shell film was obtained by using a simple chemical bath deposition method to coat a thin MgO film around TiO2 nanoparticles. The core-shell configuration was characterized by X-ray diffractometer (XRD),scanning elec-tron microscopy (SEM),energy dispersive X-ray spectroscopy (EDX),and high-resolution transmission electron microscopy (HRTEM). Lattice fringes were observed for the TiO2 particles,and the MgO shell showed an amorphous structure,revealing a clear distinction between the core and shell materials. Applying the core-shell film as photoanode to the dye-sensitized solar cells (DSSCs),it shows a superior performance compared to the pure TiO2 electrode. Under the illumination of simulated sunlight (75 mW-cm-2),the short circuit photocurrent (Jsc),the open circuit photovoltage (Voc),and the fill factor (fF) are 8.80 mA-cm-2,646 mV,and 0.69,respectively,and the conversion efficiency (η) in-creased by 21.8% (from 4.32% to 5.26%) when dipping for opti-mum condition.  相似文献   

8.
TiO2-Graphene Oxide intercalated composite (TiO2-Graphene Oxide) has been successfully prepared at low temperature (80°C) with graphite oxide (GO) and titanium sulfate (Ti(SO4)2) as initial reactants.GO was firstly exfoliated by NaOH and formed single and multi-layered graphite oxide mixture which can be defined as graphene oxide,[TiO]2+ induced by the hydrolysis of Ti(SO4)2 diffused into graphene oxide interlayer by electrostatic attraction.The nucleation and growth of TiO2 crystallites took place at low temperature and TiO2-Graphene Oxide composite was successfully synthesized.Furthermore,the photocatalytic properties of TiO2-Graphene Oxide under the irradiation of UV light were also studied.The results show that the degradation rate of methyl orange is 1.16 mg min-1 g-1(refer to the efficiency of the initial 15 min).Compared with P25 powder,this kind of intercalation composite owns much better efficiency.On the other hand,the reusable properties and stable properties of TiO2-Graphene Oxide intercalated composite are also discussed in this paper.At last,crystalline structure,interface status,thermal properties and microscopic structure of TiO2-Graphene Oxide were characterized by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),thermogravimetric analysis (TGA),field emission scanning electron microscopy (FESEM) and high-resolution Transmission Electron Microscopy (HRTEM).Also,we have analyzed major influencing factors and mechanism of the composite structures which evidently improve the photocatalytic properties.  相似文献   

9.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

10.
Four types of TiO 2 thin-film electrodes were fabricated from TiO 2 and Fe(III) doped TiO 2 sols using a layer-by-layer dip-coating technique. Electrodes fabricated were TF (pure TiO 2 surface, Fe(III)-TiO 2 bottom layer), FT (Fe(III)-TiO 2 surface, pure TiO 2 bottom layer), TT (both layers pure TiO 2 ) and FF (both layers Fe(III)-TiO 2 ). The photoelectrochemical behavior of these electrodes was characterized using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and steady-state photocurrent measurements in aqueous 0.1 mol L –1 NaNO 3 containing varying concentrations of glucose or potassium hydrogen phthalate (KHP). EIS and LSV results revealed that exciton separation efficiency followed the sequence of TF﹥TT﹥FT > FF. Under a constant potential of +0.3 V, steady-state photocurrent profiles were recorded with varying organic compound concentrations. The TF electrode possessed the greatest photocatalytic capacity for oxidizing glucose and KHP, and possessed a KHP anti-poisoning effect. Enhanced photoelectrochemical performance of the TF electrode was attributed to effective exciton separation because of the layered TF structure.  相似文献   

11.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

12.
Nitrogen and sulfur doped titanium dioxide photocatalysts were prepared by the sol-gel method.The products were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and UV-visible diffuse reflectance spectra (DRS).Photocatalytic activities of the samples were investigated on the degradation of methyl orange (MO).The effect of the dopants on the electronic structure of TiO2 was studied by the first-principles calculations based on the density functional theory (DFT).The orbital hybridization resulted in energy gap narrowing and electronic delocalization in the crystal of doped TiO2.Mobile electrons of varied energetic states could offer enhanced electron transfer,together with optical absorption improvement.The results show that the doping elements of N and S play a cooperative role in the modification of electronic structure,which enhances the photocatalytic performance.The experimentally observed absorption edges of N-doped TiO2,S-doped TiO2,and N,S-codoped TiO2 are 420,413,and 429 nm,respectively,which can be explained by the theoretical calculation results.  相似文献   

13.
 采用热分解法制备了N, Cd共掺杂纳米TiO2光催化剂,通过XRD、XPS和UV-DRS等对样品进行了分析表征,并以甲基橙为目标降解物考察了其光催化性能。实验表明产物N, Cd TiO2为锐钛矿型,颗粒约为10~15 nm,N取代了TiO2晶格中的O原子,而Cd以游离态分布在TiO2表面;其光吸收发生明显红移;光催化活性提高,N、Cd在提高TiO2的光催化活性方面具有协同作用。采用第一性原理方法,对其电子结构和光学性质进行了理论计算。结果发现在N,Cd TiO2的带隙中出现了N2p和Cd5s的杂质能级,价带的电子可以吸收较小的能量跃迁到杂质能级上,接着二次激发跃迁到导带上,电子跃迁变得容易,吸收波长向可见光区移动。计算结果很好地解释了实验现象。  相似文献   

14.
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6·3H2O into the Na3PO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of K4(FeCN)6·3H2O increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275°C. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.  相似文献   

15.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

16.
Novel poly(N-vinyl-2-pyrrolidone) (PVP)-coated nickel ferrite nanocrystals were prepared by simultaneously pyrolyzing nickel(II) acetylacetonate (Ni(acac)2) and iron(III) acetylacetonate (Fe(acac)3) in N-vinyl-2-pyrrolidone (NVP). The PVP coating was formed in situ through polymerization of NVP. The crystalline structure of the resultant nickel ferrite was analyzed by high-resolution transmission electron microscopy, electron diffraction patterns, and powder X-ray diffraction. In addition, the valence state of Ni and the metal contents of Ni and Fe in different valence states were analyzed by X-ray photoelectron spectroscopy (XPS), atomic absorption and the phenanthroline method. The surface coating layer of PVP and its binding states were characterized by Fourier transform infrared spectroscopy in combination with XPS. Colloidal stability experiments revealed that the nanocrystals could be dispersed well in both phosphate-buffered saline and Dulbecco’s Modified Eagle Medium.  相似文献   

17.
The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (V OC) and fill factor (ff) of the cells were improved significantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and flat band potential (V fb) were investigated. It is found that the interface charge recombination impedance increases and V fb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.  相似文献   

18.
The Eu, Tb co-doped SiO2 matrix tricolor fluorescence system was prepared by sol-gel technique. Red emission at 618 nm, green emission at 543 nm and blue emission at 350-500 nm were observed in the PL spectra of the sample, indicating that Eu^3+, Eu^2+ and Tb^3+ ions coexisted in the matrix. In the co-doped sample, the blue emission of Eu^2+ was much stronger than that of the sample single doped with Eu, which implied that the electron transfer between Eu^3+ and Tb^3+ maybe happened in the SiO2 matrix. The influences of the annealing temperature and Tb concentration on the PL spectra of the samples were investigated. The optimal doped concentration of Tb was determined to be 0.2% and the optimal annealing temperature 850℃. Annealed at 600℃, Tb^3+ had a sensitizing effect on Eu^3+ in the SiO2 matrix, and the emission intensity of Eu^3+ in the Eu, Tb co-doped sample was more than four times that of the single doped sample, which could be attributed to the energy transfer from Tb^3+ to Eu^3+.  相似文献   

19.
Hydrogenation has been recently developed as an approach to improve the visible-light response of titanium dioxide (TiO2); however, the effect of hydrogenation on the electronics and optical absorption of anatase TiO2 has been widely debated. In this work, the electronic structures and optical properties of hydrogenated TiO2 and its interaction with water have been studied using the density functional theory plus Hubbard model. A comparison of the effect of hydrogenation and introduction of oxygen vacancies (OVs) to TiO2 is presented. It is found that both hydrogenation and OVs can promote the absorption of visible light and strengthen the adsorption of water. Compared with OVs, hydrogen incorporation can lead to local distortion and even amorphous structures when it is heavily doped.  相似文献   

20.
To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号