首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
运用上下解方法及不动点指数理论,在非齐次边界条件下讨论了三阶三点边值问题u″′(t)+a(t)f(u(t))=0,t∈(0,1),u(0)=λ1,u’(0)=λ2,u’(1)-αu’(η)=λ3正解的存在性和不存在性,并且给出了该问题至少存在一个正解,两个正解及无正解时参数(λ1,λ2,λ3)的最优取值范围。其中(λ1,λ2,λ3)∈R3+\{(0,0,0)}为参数,η∈(0,1),α∈0,1[)η为常数,a∈C((0,1),[0,+∞)),f∈C([0,+∞),[0,+∞))。  相似文献   

2.
本文研究了一阶常微分系统周期边值问题■的正解的存在唯一性,其中a,b∈C([0,1],[0,∞))且在[0,1]的任何子区间上不恒为0,f,g:R→R连续,f(0)≥0,g(0)≥0且f(t),g(t)关于t∈[0,∞)单调递增.主要结果的证明基于Schauder不动点定理和Leray-Schauder度理论.  相似文献   

3.
本文研究了一阶半正常微分系统周期边值问题■正解的存在性,其中,参数λ>0,函数a,b∈C([0,1],[0,∞))且在[0,1]的任何子区间上不恒为0,f,g∈C([0,1]×?,?),f(x,0)<0,g(x,0)<0.基于拓扑度理论,本文证明:存在λ0>0,使得当0<λ<λ0时该问题至少有一个正解.  相似文献   

4.
考察一类半正二阶Neumann边值问题■正解的存在性,其中λ是正参数,a∈C[0,1]且■∈C([0,1]×R+,R)且f(t,0)<0。证得存在一个正数λ0,使得当0<λ<λ0时,该问题存在一个正解。主要结果的证明基于拓扑度理论。  相似文献   

5.
考虑一类带权函数的二阶两点边值问题 u" + h(t)u'' + λf(u)= 0, t ∈(0,1), u(0) = 0, u''(1) = 0 正解的唯一性,其中λ>0为参数,权函数h∈C1([0,1],R),函数f∈C1([0,∞),[0,∞))。运用分歧技巧和Sturm比较定理,获得了上述问题正解集合的全局结构,进而对于任意给定的参数λ>0,得到了该问题正解不存在或恰有一个的确切结论。  相似文献   

6.
用Krasnoselskii不动点定理,证明一类带非线性边界条件的一阶微分方程■,正解的存在性结果.其中:λ0是一个参数;a∈C([0,1],[0,∞))且■;h∈C([0,1],(0,∞));c∈C([0,∞),[1,∞))且■,f在∞处超线性且f在0点允许有奇异性.  相似文献   

7.
本文考虑二阶常微分方程三点边值问题{u″(t)+h(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=λu(η),其中η∈[0,1),参数λ∈[0,1),函数f∈C([0,∞),[0,∞))满足f(s)0,s0,h∈C([0,1],[0,∞))在[0,1]的任意子区间内不恒为零.在满足条件f0=0,f∞=∞时,本文讨论了该边值问题解所构成的连通分支随着参数λ在[0,1]内的变化而变化的情形,建立了正解的全局结构.主要结果的证明基于锥上的不动点指数定理以及解集连通性质.  相似文献   

8.
研究二阶半正问题■正解的存在性,其中λ为正参数,α,δ>0为常数,b,c∈C([0,∞),[0,∞)),h∈C([0,1],[0,∞)),f∈C([0,∞),R),f>-M(M>0)且f:■。主要定理的证明基于Krasnoselskii不动点定理。  相似文献   

9.
本文研究了三点边值问题{u″-k2u+a(t)f(u)=0,t∈(0,1),u(0)=0,u(1)=αu(η)正解的存在性,其中a∈C([0,1],[0,∞)),η∈(0,1),α∈(0,sinh(k)/sinh(kη)),f∈C([0,∞),[0,∞)).主要结果的证明基于锥上的不动点定理.  相似文献   

10.
超线性条件下奇异二阶三点边值问题正解的存在性   总被引:2,自引:0,他引:2  
应用锥上不动点定理,给出了奇异非线性二阶三点边值问题x"(t) a(t)f(x(t))=0,0<t<1;x(0)=0,x(1)=kx(η)存在C[0,1]正解的充分条件,这里η∈(0,1)是一常数,f∈C([0,∞]),[0,∞]),a∈C((0,1),[0,∞)).  相似文献   

11.
本文研究了带有导数项的非线性~Newmann~问题 $$ \left\{\begin{array}{ll} u''(t)+ku(t)=f(t,u(t),u''(t)),\quad t\in (0,1),\\[2ex] u''(0)=u''(1)=0 \\[2ex] \end{array}. \right.\eqno $$ 其中~$0相似文献   

12.
{\small 本文运用混合单调算子方法研究了带积分边界条件的三阶边值问题 $$\left\{\begin{aligned} &-u''(t)=f(t,u(t),u(\xi t))+g(t,u(t)),\quad~t\in(0,1), \xi\in(0,1),\&u(0)=u''(0)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\&u''(1)=\int_{0}^{1}q(t)u''(t)dt~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \end{aligned} \right. $$ 正解的存在唯一性,~其中~$f:[0,1]\times[0,+\infty)^{2}\rightarrow[0,+\infty)$连续,~$g:[0,1]\times[0,+\infty)\rightarrow[0,+\infty)$连续,~$q\in C([0,1],[0,+\infty))$. }  相似文献   

13.
本文运用迭代法研究了带p-Laplacian算子的四阶Sturm-Liouville边值问题{(φp(u″(t)))″+q(t)f(t,u(t),u″(t))=0,t∈(0,1),αu(0)-βu′(0)=0,γu(1)+δu′(1)=0,u″(0)=0,u'(0)=0正解的存在性,其中φp(s)=|s|~(p-2)s,p1;f:[0,1]×[0,+∞)×R→[0,+∞)连续;q(t)0,t∈(0,1).  相似文献   

14.
本文研究了一类四阶非线性常微分方程边值问题 $$ \left\{\begin{array}{ll} u''=r f(t, u(t)), \ \ \ 0相似文献   

15.
本文利用不动点指数理论证明了一类非线性二阶~Robin~问题 $$ \left\{\begin{array}{ll} u''(t)-k^{2}u(t)+\lambda f(u(t))=0, ~~\ \ \ t\in (0,1),~~k\neq0,\\[2ex] u''(0)=0,~~u(1)=0 \end{array} \right. $$ 多个正解的存在性,~其中~$f:[0,\infty)\rightarrow [0,\infty)$~为连续函数且有多个零点,~$\lambda >0$~为参数.  相似文献   

16.
本文研究了二阶和四阶常微分方程耦合系统u~((4))(t)=λf(t,v(t)),t∈(0,1),-v″(t)=λg(t,u(t)),t∈(0,1),u(0)=u(1)=u″(0)=u″(1),v(0)=v(1)正解的存在性,其中λ0为参数,f,g∈C([0,1]×[0,∞),R).当f,g满足适当的条件时,本文证明了λ充分大时方程一个正解的存在性.主要结果的证明基于Schauder不动点定理.  相似文献   

17.
本文研究了一类一阶差分方程周期边值问题-Δx(t)+q(t)x(t)=λa(t)x(t)+f(t,x(t))x(t),t∈T,x(0)=x(T)正解连通分支的振荡及无穷多个正解的存在性,其中λ0是参数,T2是整数,T:={0,1,…T-1},q:T→[0,∞),a:T→(0,∞),f:T×R→R连续,f(t,0)=0.主要结果的证明基于Rabinowitz全局分歧定理.  相似文献   

18.
本文研究了一类非线性二阶常微分方程Dirichlet边值问题{u″-a(t)u+f(t,u)=0,0t1,u(0)=u(1)=0正解的存在性,其中f:[0,1]×[0,∞)→[0,∞)连续,a(t):[0,1]→[0,∞)连续,主要结果的证明基于锥拉伸与压缩不动点定理.  相似文献   

19.
本文研究了一阶周期边值问题■多个正解的存在性,其中λ>0是一个参数,a∈C(R,[0,∞))是一个T-周期函数且∫T0a(t)dt>0,f∈C([0,∞),(0,∞))且单调递增.在■的条件下,本文证明存在一个λ*>0,使当0<λ<λ*时问题不存在正解;当λ=λ*时问题至少存在一个正解;当λ>λ*时问题至少存在两个正解.主要结果的证明基于上下解方法和Leray-Schauder度.  相似文献   

20.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号