首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

3.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel (EN24) and nickel-based superalloy (IN718), and the microstructures of three distinct weld zones—the weld interface (WI)/thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ), and the base metal—were examined. The joint was observed to be free of defects but featured uneven flash formation. Electron backscatter diffraction (EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ. Moreover, significant refinement in grain size (2–5 μm) was observed at the WI/TMAZ with reference to the base metal. The possible causes of these are discussed. The microhardness profile across the welded joint shows variation in hardness. The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates. The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

4.
This study introduced a novel fabrication of aluminum–carbon nanotube (CNT) composites by employing bulk acoustic waves and accumulative roll bonding (ARB). In this method, CNT particles were aligned using ultrasonic standing wave in an aqueous media, and the arrayed particles were precipitated on the aluminum plate substrate. Then, the plates rolled on each other through the ARB process with four passes. Optical and scanning electron micrographs demonstrated the effective aligning of CNTs on the aluminum substrate with a negligible deviation of arrayed CNTs through the ARB process. The X-ray diffraction pattern of the developed composites showed no peaks for carbon and aluminum carbide. In addition, tensile tests showed that the longitudinal strength of the specimens processed with aligned CNTs was significantly greater than that of the specimens with common randomly dispersed particles. The proposed technique is beneficial for the fabrication of Al–CNT composites with directional mechanical strength.  相似文献   

5.
6.
Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechanical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90 min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.  相似文献   

7.
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery; it can alleviate the environmental pressure caused by slag stocking. The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method. Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed. The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.  相似文献   

8.
《矿物冶金与材料学报》2020,27(11):1489-1498
The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm?2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm?2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.  相似文献   

9.
The co-oxidation of As(III) and Fe(II) in acidic solutions by pressured oxygen was studied under an oxygen pressure between 0.5 and 2.0 MPa at a temperature of 150°C. It was confirmed that without Fe(II) ions, As(III) ions in the solutions are virtually non-oxidizable by pressured oxygen even at a temperature as high as 200°C and an oxygen pressure up to 2.0 MPa. Fe(II) ions in the solutions did have a catalysis effect on the oxidation of As(III), possibly attributable to the production of such strong oxidants as hydroxyl free radicals (OH·) and Fe(IV) in the oxidation process of Fe(II). The effects of such factors as the initial molar ratio of Fe(II)/As(III), initial pH value of the solution, oxygen pressure, and the addition of radical scavengers on the oxidation efficiencies of As(III) and Fe(II) were studied. It was found that the oxidation of As(III) was limited in the co-oxidation process due to the accumulation of the As(III) oxidation product, As(V), in the solutions.  相似文献   

10.
11.
汾河太原段水质现状及变化情况的分析   总被引:5,自引:0,他引:5  
对汾河太原段水质监测数据的统计分析结果表明,汾河太原段的水质污染严重,在其9个监测断面中,小店桥和温南社断面的水质污染最为严重,主要污染物为5日生化需氧量、氨氮和高锰酸盐;采用综合指数法对2007年汾河太原段枯水期、平水期及丰水期内的水质变化情况进行了分析,表明汾河太原段上游段水质最好,中游段水质次之,下游段水质最差,且滩上桥、寨上水文站和温南社断面在河流解冻期时污染明显加重;在此基础上,针对各河段的水污染问题提出了相应的建议。  相似文献   

12.
横肋是影响铝合金模板承载力的重要构造。为研究横肋截面类型对铝合金模板的力学性能,开展了梯形截面横肋的铝合金模板的三分点加载试验,并将其试验结果与采用abaqus软件的精确化建模得到的数值结果进行对比,验证了数值模拟的可靠性。并在此基础上,通过数值模拟研究了方形、工字形和T形3种横肋截面类型的铝合金模板力学性能。结果表明,铝合金模板在标准荷载作用下,其边肋的拉应变最大,属于危险截面。横肋截面类型是影响横肋自身乃至铝合金模板整体受力状态的关键因素,T形截面是单轴对称截面中最优的截面类型,方形截面是双轴对称截面中最优的截面类型,而双轴对称截面横肋的最大应力产生在横肋中间,可有效避免横肋两端焊接的薄弱处,双轴对称截面的横肋受力更合理,因此方形截面是最佳横肋截面类型。在横肋截面形状方面,与方形截面面积相比,T形和工形截面面积分别下降了41.9%和21.2%,T形截面是材料用量最少的横肋截面类型,可用于一些受力较小的结构,如小矮墙等结构处。  相似文献   

13.
地质剖面自动绘制的数据模型研究   总被引:1,自引:0,他引:1  
基于面向对象技术和GIS空间数据模型理论建立地质剖面的概念模型和逻辑模型,并从计算生成地质割面数据和地质剖面的可视化表达两个层面,分别建立了地质剖面的计算数据模型和表现数据模型.最后基于本文建立的地质剖面数据模型,实现了地质剖面的自动绘制、地质剖面图中断层和褶皱的可视化表达以及各对象拓扑关系的建立.图11,参10.  相似文献   

14.
为了分析各种断面形状调节手段对各次断面形状的影响规律,以HC轧机为例,以倾辊、工作辊弯辊、工作辊非对称弯辊和中间辊横移作为断面形状调节手段,按照机理模型计算了各调节手段对1次、2次、3次和4次断面形状的影响系数,系统地揭示了各种调节手段对各次断面形状的影响规律,为断面形状在线控制模型的建立、实现提供了基础。  相似文献   

15.
 末段储气是输气管道短期调峰的重要手段,工程上经常用稳态计算法估算输气管道末段储气量,而末段储气过程是一个复杂的非稳态过程,因此用稳态计算法估算末段储气量具有一定的偏差。本文通过对管道末段进行多种工况下的非稳态模拟来界定末段储气量稳态计算法的偏差范围,并得到了若干管道末段的储气规律。针对影响输气管道末段储气的各种因素,分别按不同管径、管长、进口压力和流量设计了6种工况并利用国际上通用的管道仿真软件SPS 9.6(Stoner Pipeline Simulator 9.6)进行动态仿真。结果表明,在非稳态工况下,稳态法计算末段储气量比非稳态计算末段储气量低约14%—25%;输气管道末段储气量的变化受用气负荷变化规律的影响,在不同工况下末段最大储气量出现的时间一般比管道末端最大用气负荷出现的时间有所提前或时间相近;当管道末端用气流量发生变化时,管道末段起点压力的变化较终点压力的变化具有滞后性,管段越长、管径越大,滞后越明显。  相似文献   

16.
目的探讨剖宫产率上升的原因及剖宫产指征的变化。方法选择我院产科1998年1月至2007年12月10年间所有分娩病历8740例,其中剖宫产病历2652例,分析剖官产率上升的原因及剖宫产指征变化的关系。结果(1)剖宫产率逐年增加;(2)剖宫产指征中,以社会因素为手术指征的剖宫产率明显增加,并有逐年上升的趋势,而以其它因素为指征的剖官产率还较平稳。结论剖官产率上升的原因不纯是医学问题,也是社会问题,通过孕妇及家属、医务人员和社会的共同努力是可以降低的。  相似文献   

17.
简要介绍了使用滑动式切片机做连续切片的方法及操作中的注意事项,指出使用滑动式切片机做连续切片同使用轮转式切片机制作连续切片相比,可大大降低医疗成本,值得推广。  相似文献   

18.
针对路堤与桥台过渡段、半挖半填路基过渡段、路堑与隧道过渡段制定了施工方法、工艺和要点,提出了过渡段施工的技术措施和施工控制及质量检测标准。  相似文献   

19.
阐述了完善铁路站段分配制度的现实需求、基本思路和具体内容,以太原铁路局大同西供电段为例,探讨了完善铁路站段分配制度的实施情况,指出完善铁路站段分配制度需注意的几个方面。  相似文献   

20.
桥梁结构抗震设计中截面刚度的取值分析   总被引:2,自引:0,他引:2  
目前我国桥梁抗震设计规范对钢筋混凝土桥墩的截面弹性刚度取值没有统一的规定 ,一般取毛截面刚度来作为截面的弹性刚度 ,这与合理的取值之间有较大的差异 .在结合国外最新研究成果的基础上 ,对桥梁结构基于强度抗震设计中采用毛截面刚度所引起的误差进行了分析 ,并建议了一种基于截面弹性刚度合理取值的强度抗震设计方法 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号