首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.  相似文献   

2.
Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in individuals from families with situs inversus and defects in the assembly of inner and outer dynein arms. Knockdown of dnaaf3 in zebrafish likewise disrupts dynein arm assembly and ciliary motility, causing primary ciliary dyskinesia phenotypes that include hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a PF22-null mutant cannot assemble any outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests that DNAAF3 (PF22) acts at a similar stage as other preassembly proteins, for example, DNAAF2 (also known as PF13 or KTU) and DNAAF1 (also known as ODA7 or LRRC50), in the dynein preassembly pathway. These results support the existence of a conserved, multistep pathway for the cytoplasmic formation of assembly competent ciliary dynein complexes.  相似文献   

3.
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.  相似文献   

4.
5.
6.
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.  相似文献   

7.
Meckel-Gruber syndrome (MKS) is a genetically heterogeneous, neonatally lethal malformation and the most common form of syndromic neural tube defect (NTD). To date, several MKS-associated genes have been identified whose protein products affect ciliary function. Here we show that mutations in MKS1, MKS3 and CEP290 (also known as NPHP6) either can cause Bardet-Biedl syndrome (BBS) or may have a potential epistatic effect on mutations in known BBS-associated loci. Five of six families with both MKS1 and BBS mutations manifested seizures, a feature that is not a typical component of either syndrome. Functional studies in zebrafish showed that mks1 is necessary for gastrulation movements and that it interacts genetically with known bbs genes. Similarly, we found two families with missense or splice mutations in MKS3, in one of which the affected individual also bears a homozygous nonsense mutation in CEP290 that is likely to truncate the C terminus of the protein. These data extend the genetic stratification of ciliopathies and suggest that BBS and MKS, although distinct clinically, are allelic forms of the same molecular spectrum.  相似文献   

8.
RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.  相似文献   

9.
The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.  相似文献   

10.
Chen WJ  Lin Y  Xiong ZQ  Wei W  Ni W  Tan GH  Guo SL  He J  Chen YF  Zhang QJ  Li HF  Lin Y  Murong SX  Xu J  Wang N  Wu ZY 《Nature genetics》2011,43(12):1252-1255
Paroxysmal kinesigenic dyskinesia is the most common type of paroxysmal movement disorder and is often misdiagnosed clinically as epilepsy. Using whole-exome sequencing followed by Sanger sequencing, we identified three truncating mutations within PRRT2 (NM_145239.2) in eight Han Chinese families with histories of paroxysmal kinesigenic dyskinesia: c.514_517delTCTG (p.Ser172Argfs*3) in one family, c.649dupC (p.Arg217Profs*8) in six families and c.972delA (p.Val325Serfs*12) in one family. These truncating mutations co-segregated exactly with the disease in these families and were not observed in 1,000 control subjects of matched ancestry. PRRT2 is a newly discovered gene consisting of four exons encoding the proline-rich transmembrane protein 2, which encompasses 340 amino acids and contains two predicted transmembrane domains. PRRT2 is highly expressed in the developing nervous system, and a truncating mutation alters the subcellular localization of the PRRT2 protein. The function of PRRT2 and its role in paroxysmal kinesigenic dyskinesia should be further investigated.  相似文献   

11.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

12.
Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.  相似文献   

13.
Mutations affecting ciliary components cause ciliopathies. As described here, we investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel and Joubert syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2 and Cc2d2a. Components of this complex co-localize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes Joubert syndrome. Thus, a transition zone complex of Meckel and Joubert syndrome proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.  相似文献   

14.
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11-q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20-alpha-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.  相似文献   

15.
Autosomal dominant centronuclear myopathy is a rare congenital myopathy characterized by delayed motor milestones and muscular weakness. In 11 families affected by centronuclear myopathy, we identified recurrent and de novo missense mutations in the gene dynamin 2 (DNM2, 19p13.2), which encodes a protein involved in endocytosis and membrane trafficking, actin assembly and centrosome cohesion. The transfected mutants showed reduced labeling in the centrosome, suggesting that DNM2 mutations might cause centronuclear myopathy by interfering with centrosome function.  相似文献   

16.
17.
Dynein mutations impair autophagic clearance of aggregate-prone proteins   总被引:11,自引:0,他引:11  
Mutations that affect the dynein motor machinery are sufficient to cause motor neuron disease. It is not known why there are aggregates or inclusions in affected tissues in mice with such mutations and in most forms of human motor neuron disease. Here we identify a new mechanism of inclusion formation by showing that decreased dynein function impairs autophagic clearance of aggregate-prone proteins. We show that mutations of the dynein machinery enhanced the toxicity of the mutation that causes Huntington disease in fly and mouse models. Furthermore, loss of dynein function resulted in premature aggregate formation by mutant huntingtin and increased levels of the autophagosome marker LC3-II in both cell culture and mouse models, compatible with impaired autophagosome-lysosome fusion.  相似文献   

18.
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development.  相似文献   

19.
Joubert syndrome-related disorders (JSRD) are a group of syndromes sharing the neuroradiological features of cerebellar vermis hypoplasia and a peculiar brainstem malformation known as the 'molar tooth sign'. We identified mutations in the CEP290 gene in five families with variable neurological, retinal and renal manifestations. CEP290 expression was detected mostly in proliferating cerebellar granule neuron populations and showed centrosome and ciliary localization, linking JSRDs to other human ciliopathies.  相似文献   

20.
Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号