首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 890 毫秒
1.
 污水再生利用是解决水资源与能源危机的重要途径,采用微藻深度处理污水并生产生物质能源是一大热点。针对市政污水深度处理,以活性污泥为固定化细菌,采用小球藻和栅藻,分别比较了固定化藻菌、固定化微藻,以及悬浮态微藻在藻体生长、污水脱氮除磷和微藻产油方面的差异,拟实现对市政污水深度脱氮除磷的同时实现微藻油脂的诱导富集。结果表明,固定化藻菌对氮磷的去除效果优于固定化微藻和悬浮态微藻,且固定化藻菌中微藻油脂质量分数最高。当市政污水NH4+-N 和PO43--P 的初始质量浓度分别为25 和3 mg/L 时,固定化栅藻菌培养4 d 后能够完全去除水体中的氮磷,而固定化藻菌中小球藻的油脂质量分数可达到16.5%。  相似文献   

2.
为了提高微藻生长速率、实现低成本高效收集,文章以小球衣藻(Chlamydomonas microsphaera)为研究对象,探究无机碳源对菌-藻体系中微藻生长和聚集的影响。结果表明:无机碳源能够显著提高菌-藻体系中微藻生物量,当初始菌藻数量比为15∶1时,在低碳源(37.6 mg/L)水平下,经过6 d培养后微藻生物量可达1.255×106个/mL,较纯藻培养体系增加30%;当碳源质量浓度升高至188.0 mg/L时,微藻数量较纯藻培养体系增加68%,可达1.681×106个/mL;菌-藻体系也有助于微藻自聚集,随着无机碳源质量浓度增加,其聚集效果变得更明显,聚集率最高可达66%,远高于纯培养体系中的27%。研究结果可为微藻综合利用研究提供参考。  相似文献   

3.
通过适应猪粪废水芽孢杆菌的筛选,以4株芽孢杆菌分别与莱茵衣藻(Chlamydomonas reinhardtii)构建共生系统.方法:通过对氨氮、总氮、总磷、化学需氧量的测定,研究藻菌共生系统产生协同作用高效率转化猪粪废水的条件.结果:与纯藻系统比较,4个藻菌共生系统对猪粪废水的处理并未表现出优势;但添加0.5 g/L葡萄糖后,4个藻菌共生系统的去除效率显著提升,B.coagulans BS32和C.reinhardtii的共生系统的去除效率提高最明显;氨氮、总氮、总磷和化学需氧量的去除效率分别提高了16.58%, 28.38%, 8.90%和23.04%.同时,添加0.5 g/L葡萄糖和芽孢萌发剂100μmol/L丙氨酸后,藻菌共生系统对废水的去除效率进一步提高,B.coagulans BS32和C.reinhardtii的共生系统对氨氮、总氮、总磷和化学需氧量的去除效率分别提高了18.16%, 39.51%, 19.84%和39.56%.结论:添加少量葡萄糖和微量丙氨酸可促进莱茵衣藻和芽孢杆菌共生系统对猪粪废水的有效转化.  相似文献   

4.
以不同浓度的畜禽养殖废水为对象,研究藻菌体系对废水中的NH4+-N、TP和COD的去除效果。结果表明:藻菌体系对不同浓度的畜禽养殖废水的处理效果不同,当废水中NH4+-N、TP和COD浓度分别小于44.4 mg/L、6.4 mg/L和500 mg/L时,藻菌微生物的生长速度快、生物量大,对废水处理效果好;当处理时间为6 d时,NH4+-N、TP和COD的去除率分别大于90%、84%和80%,该实验结果为构建高效藻类塘提供理论依据。  相似文献   

5.
为了研究小球藻在模拟畜禽养殖废水中的生长特性及其对高质量浓度有机物废水的协同净化效果,分析小球藻在自养/异养混合代谢生长模式下对有机与无机碳源的竞争利用策略以及外加无机碳源对小球藻生长与废水净化能力的影响规律。研究结果表明:在高质量浓度有机碳(化学需氧量质量浓度ρCOD为(1 172±22.5) mg/L)存在条件下,一定浓度的无机碳(0.1~1μmoL/L)可以促进小球藻的生长及其对有机物的吸收,COD去除率可提高12.9%~40.4%,同时小球藻合成积累油脂和叶绿素能力也得到提高,藻细胞内总叶绿素质量浓度高达(8.6±0.06)mg/L,单个藻细胞中油脂质量达(0.26±0.004) ng。但当无机碳源的浓度继续提高到2.1 mmoL/L时,小球藻的生长和废水有机碳利用速率明显受到抑制,小球藻的比生长速率下降(6.5±2.1)%,COD去除率只有(68.8±5.6)%,但对氮磷去除率影响不大,总氮、总磷、氨氮的去除率分别为(97.0±0.6)%,(86.8±3.8)%和100%。  相似文献   

6.
对棕鞭藻(Ochromonas sp.)培养体系中的共栖细菌进行分离纯化,拟通过藻菌共生体系的建立提高微藻生物量积累能力,并探究藻菌共生体系对造纸废水的处理效果.经16S rDNA基因测序比对,分离获得的5株微藻共栖细菌分别为Por-phyrobacter sp.、Hyphomonas sp.、Aquimonas sp.、Agrobacterium sp.和Hydrogenophaga sp..通过向微藻培养体系添加不同的共栖细菌以验证其对微藻生长效率的影响效果,结果表明,5株微藻共栖细菌中,Aquimonas sp.(水单胞菌)可显著促进棕鞭藻的生长,当藻菌比为1:3时,水单胞菌对微藻的促生效果最佳,共培养10 d后,体系中微藻干重达到最大值0.78 g/L.利用藻菌共生体系处理造纸废水8 d,废水中化学需氧量(chemical oxygen demand,COD)、总氮量(total nitrogen,TN)、总磷量(total phos-phorus,TP)、色度分别从154.13 mg/L、22.42 mg/L、4.90 mg/L、275降至37.5 mg/L、14.53 mg/L、0.48 mg/L、18,去除率分别为75.67%、35.19%、90.2%和93.45%;同时微藻干重可达1.073 g/L.藻菌共生体系对造纸废水深度处理的效果与芬顿法相当,可达到《制浆造纸工业水污染排放标准》(GB 3544—2008),同时可显著降低处理成本,具有良好的应用前景.  相似文献   

7.
以投加人工饲料喂养罗非鱼7天的玻璃鱼缸内的废水为样品,接种地衣芽孢杆菌(Bacilluslicheniformis)、硝化细菌、月牙藻(Selenastrum reinsch)和四尾栅藻(Scenedesmus quadricanda)后于光照箱内培养,于0、12h、24h、48h、84h、120h、168h测定废水样品的pH值、溶解氧、氨氮、亚硝酸盐氮、硝酸盐氮和可溶性磷酸盐的去除率,以24h氨氮和168h可溶性磷酸盐的去除率为指标进行L9(34)正交实验,研究菌-藻体系去除水产养殖废水中氮和磷的净化效果。结果表明,地衣芽孢杆菌、硝化细菌、月牙藻和四尾栅藻组成的菌-藻体系可以通过其新陈代谢过程中形成的原始共生关系有效地去除养殖水体中的氮、磷污染物。菌-藻体系去除氨氮的最佳反应时间为24h,最大去除率98%,在初始密度为5×105cells/ml条件下,最佳菌-藻体积配比为1∶2∶2∶3,即最佳菌-藻初始密度分别为2.5×105cell/ml、5.0×105cell/ml、5.0×105cell/ml、10.0×105cell/ml。菌-藻体系去除可溶性磷酸盐的最佳反应时间为168h,去除率100%,在初始密度为5×105cells/ml条件下,最佳菌藻体积配比为1∶1∶3∶2,即最佳菌-藻初始密度分别为2.5×105cell/ml、2.5×105cell/ml、10.0×105cell/ml、5.0×105cell/ml。  相似文献   

8.
采用液体振荡培养,研究了Mn、B、Zn、Cu和Mo 5种微量元素复合物对4种肥料微生物生长的影响.结果表明,当MnCl2.4H2O、H3BO4、ZnSO4.7H2O、CuSO4.5H2O、Na2MoO4.H2O 5种无机盐的质量浓度高于1.00 g/L时,对圆褐固氮菌、巨大芽孢杆菌、胶质芽孢杆菌和细黄链霉菌的生长有显著抑制作用;而浓度为0.01 g/L时,对4种细菌的生长则有显著促进作用.  相似文献   

9.
铜绿微囊藻(Microcystis aeruginosa)可通过二氧化碳浓缩机制(carbon concentrating mechanism, CCM)利用水环境中的无机碳进行光合固碳来促进自身生长,是引发淡水蓝藻水华的优势种。自然水体生态系统中菌藻共生体系是其重要组成部分,对藻华起到重要调控作用,但有关不同碳源条件下共生细菌对蓝藻藻华的影响仍不清楚。文章以铜绿微囊藻为模式蓝藻,探究在不同碳源组合下共存细菌对其生长的影响。在总碳(total carbon, TC)质量浓度为25 mg/L的无机碳源和有机碳源组合,环境初始菌藻比为1∶2时,铜绿微囊藻的最大生物量达到最大值5.0×107个/mL,是纯藻对照组最大生物量的2.05倍;在加入25 mg/L的有机碳源,初始菌藻比为5∶1时,培养周期内可预测的最大生物量达到最小,为1.5×107个/mL,仅为纯藻对照组最大生物量的0.76倍。结果表明:不同碳源下初始细菌的出现会极大程度地影响铜绿微囊藻的生长,其中,在无机碳源和混合碳源的营养条件下,初始细菌显著加快了铜绿微囊藻的生长繁殖。  相似文献   

10.
对3种具有水质净化功能的地衣芽孢杆菌、假丝酵母菌和荚膜红假单胞菌进行混合培养,探讨3种菌混合培养的培养基、培养条件及其生长关系.实验结果表明,3种菌均可良好生长的培养基为每升水含葡萄糖10g,酵母膏10 g,蛋白胨6 g,NaCl220 g,MgSO40.2 g,KH2PO40.5 g,K2HPO40.3 g,pH6.5;3种菌混合培养的接种顺序与培养条件为在培养液中先分别接种3%荚膜红假单胞菌与假丝酵母菌,于35℃、200 r/min摇床下培养48 h,后接种4%地衣芽孢杆菌继续混合培养至60 h;3种菌混合培养时的生长关系为假丝酵母菌与荚膜红假单胞菌存在互惠互利关系,而地衣芽孢杆菌与其它两株功能菌为无关共栖关系.  相似文献   

11.
A_2N-SBR双污泥反硝化生物除磷系统效能分析   总被引:8,自引:0,他引:8  
采用生活污水和A2N-SBR工艺对反硝化除磷过程进行了研究.在进水COD浓度为325mg/L,磷浓度为9.1mg/L,氨氮浓度为65mg/L的条件下,出水氨氮浓度和磷浓度分别为3.3mg/L和0.17mg/L,氮和磷的去除率分别为95%和98%.进水C/N比对A2N-SBR反硝化除磷体系的除磷和脱氮效率都有重要影响,在进水C/N比为5时获得了最佳的脱氮和除磷效率;当C/N比小于5时,氮和磷的去除率都有大幅度的下降;当C/N比大于5时,氮的去除率未受到影响,而磷的去除率却有所下降.  相似文献   

12.
为了研究温度、光照和磷质量浓度对生物操纵效果的影响,选用小环藻、大型溞和金鱼藻分别作为浮游植物、浮游动物和大型水生植物的代表种,建立不同磷质量浓度(0.05、0.1、0.5、2mg/L)的水生微宇宙模型,研究不同温度梯度(15、20、25、30℃)、不同光照强度(1000、2600、4200、5800lx)及不同光暗比(10∶14、12∶12、14∶10、16∶8)条件下浮游动物和沉水植物的控藻效果.结果表明:磷质量浓度为0.05~0.5mg/L、温度在20~25℃时,大型溞和金鱼藻生长较好,对小环藻有明显的抑制作用;磷质量浓度为0.05~0.5 mg/L、光照强度在1000~4200lx时,大型溞和金鱼藻对小环藻有明显的抑制作用;强光(5800lx)有利于小环藻、金鱼藻的生长,但对大型溞有抑制;磷质量浓度为0.05~0.5mg·L-1,光暗比为14h∶10h时,大型溞和金鱼藻生长最好,可以达到很好的抑藻效果;当磷质量浓度相同时,温度30℃、光照5800lx时,培养液中氮磷去除率最高.  相似文献   

13.
膨胀蛭石用于人工湿地去除氮磷的研究   总被引:1,自引:0,他引:1  
采用实验室模拟上向流人工湿地的方法研究了系统运行参数对膨胀蛭石去除氮、磷效果的影响.结果表明:膨胀蛭石的吸附作用在运行前期对氮、磷的去除起主要作用,在运行后期,氮、磷去除主要依靠微生物的作用;挂膜膨胀蛭石较未挂膜膨胀蛭石对氮、磷的去除率分别提高了9.8%,9.5%;膨胀蛭石人工湿地中TN,TP的进水质量浓度在0~100 mg/L,0~8 mg/L范围内时,其去除率随进水质量浓度的增大而增大,当进水质量浓度超过这个范围时,填料的吸附作用降低,生物膜的降解作用增强.膨胀蛭石是一种性能优异的人工湿地填料,对其进行人工挂膜可有效增强其去除氮、磷的能力.  相似文献   

14.
COD进水浓度对SBMBBR脱氮除磷效果影响   总被引:8,自引:0,他引:8  
研究了序批式移动床生物膜反应器(SBMBBR)中COD进水浓度对同步脱氮除磷效果的影响.维持进水PO3-4-P浓度为10 mg/L、NH3-N浓度为40 mg/L左右,COD浓度为200~800 mg/L,研究了反应器的脱氮除磷效果.结果表明:厌氧释磷量在COD进水浓度为450 mg/L时达到最大,为61.2 mg/L;之后,增加COD进水浓度不利于磷的释放.在厌氧段初期,TN便有超过30%的损失,可能是因生物吸附造成的.好氧时TN和磷均损失较大,说明在生物膜上很可能发生了同时硝化反硝化和反硝化聚磷.一定范围的COD浓度能促进TN的去除.TN去除率在COD进水浓度为450 mg/L时达到最大,为87.8%,氮磷的去除与生物膜的生物量和生物膜厚度密切相关.  相似文献   

15.
进水碳磷比对连续流反硝化除磷工艺脱氮除磷效果的影响   总被引:1,自引:0,他引:1  
针对连续流双污泥反硝化除磷工艺,考察进水碳磷质量比(m(C)/m(P))对化学需氧量(COD)、氨氮和总磷(TP)去除效果的影响.系统进水COD和氨氮分别保持在250和45 mg/L左右,通过改变进水TP浓度来调整m(C)/m(P).实验结果表明:在m(C)/m(P)比分别为64.1,42.0,33.0和17.8的情况下,TP去除率分别为93.2%,92.0%,78.3%和65.8%,除磷效率明显降低.在m(C)/m(P)>42.0的情况下,出水TP低于0.5 mg/L.随着m(C)/m(P)的降低,反硝化聚磷污泥释磷量和净聚磷量增加,净聚磷量分别为3.63,5.33,6.26和10.3mg/L.m(C)/m(P)减小有利于提高生物除磷系统的稳定性,但出水磷浓度会有所增加,可通过适当延长后置曝气池停留时间来降低出水磷浓度.m(C)/m(P)对COD的去除和脱氮的效果影响不大,COD去除率保持在85.6%~93.1%,氨氮的去除率大于93%.  相似文献   

16.
以模拟华南地区的城镇污水研究对象,开展了污泥回流比对双污泥BCR反硝化除磷的影响研究. 结果表明:使超越污泥和回流污泥的回流比分别控制为0.6、0.4和0.2时, BCR工艺对COD去除率的均值分别为89.98%、89.48%和82.38%,出水COD平均质量浓度分别为20.94 、21.67 、37.66 mg/L;而总氮的去除率均值则分别为79.94%、80.58%和65.47%,出水总氮平均质量浓度分别为5.72 、5.75 、10.85mg/L;总磷去除率的均值分别为88.81%、91.64%和77.06%,出水总磷质量浓度均值为0.76 、0.59 、1.62mg/L,新工艺改善了传统双污泥连续流工艺出水NH4+-N质量浓度偏高的缺陷. 工艺在超越污泥回流比和回流污泥回流比均是0.4时处理效果最佳. 由于好氧硝化池与中沉池合建,好氧硝化池中的NO3--N与中沉池中的DPB接触而发生反硝化吸磷的反应而使部分总磷在好氧硝化池中被去除.  相似文献   

17.
磷是植物必需的营养元素之一,但大多数耕地土壤中磷素易与Ca2+、Fe3+、Fe2+、Al3+等结合成无效态磷,植物难以直接吸收利用.解磷微生物可活化难溶性磷,将其接种于堆肥,有助于提高堆肥产品磷素植物可利用程度.从鸡粪好氧堆肥中筛选获得高效解磷细菌,为生物强化富磷堆肥的制备提供菌种.利用NBRIY培养基初筛获得解磷菌,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号