首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Removal of NOx(DeNOx, NOx is the total of NO and NO2) from flue gas by radical injection has been investigated .the discharge characteristics were examined and the steady streamer corona was acquired hy adjusting the nozzle gases properly. It was Found that an increase in the voltage resulted in a decrease in the NO concentration and the concentration of the NO2 increased at tow voltages but decreased as the voltage rose to a certain level. The DeNOx efficiency increased as the applied voltage rose and reached a maximum of 70% when the voltage approached the breakdown voltage. The hypothetical mechanism of NOx removal suggested that the radicals formed in the discharge process converted the NO and NO2 into acidic species. The Monte Carlo method was used to calculate the rate coefficients and the productivity of the radicals, and then the concentrations of both NO and NO2 and the DeNOx effielencies were calculated with chemical kinetics. The calculated DeNOx efficiencies were coalparable with the experimental DeNOx efficiencies at low voltages, but were lower at high voltages.  相似文献   

2.
Injection of fuel containing CO2 has potential to reduce NOx and soot emissions in a diesel engine. This paper presents an experimental study on the spray characteristics of fuel containing CO2 as measured by phase doppler anemometry (PDA). Experiments were performed under atmospheric conditions on diesel hole-type nozzles at constant injection pressure. Effects of CO2 concentration in diesel fuel on the spray pattern, droplet size and velocity were measured. Experimental results show that fuel atomization will improve greatly when the concentration of dissolved CO2 in the fuel exceeds the critical value. The axial and radial velocity of the fuel spray containing CO2 is larger than that of conventional diesel fuel spray near the nozzle exit due to flash boiling phenomena. Downstream of the spray, the radial velocity and droplet size of fuel containing CO2 is much more uniform and smaller than that of pure diesel spray. It is attributed to the greatly enhanced liquid-gas mixing resulting from flash separation of CO2 from the liquid. New insight into the atomization of the fuel containing CO2 was obtained and a possible mechanism to explain the phenomena was proposed. The method may be developed into a new technique for controlling diesel combustion and exhaust emis-sions.  相似文献   

3.
The interactions between NO, O2 and their mixture on BaAl2O4, as well as the reaction of NOx with soot in the presence of O2, have been investigated using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). NO adsorption produces only nitrites species in the absence of O2. NO2 ad- sorption produces nitrates species besides nitrites species. The produced nitrites will further react with O2, O-su rf and O l2-att ice to form nitrates. The reaction of NOx with soot begins with the reaction of ni- trates with soot oxygenated complex (C(O)), which is regarded as the key and rate determining step. A reaction pathway is proposed for the catalyzed reaction of NOx with soot in the presence of O2.  相似文献   

4.
CuO-Fe2O3 composite material with strong magnetism and a large surface area is prepared by the co-precipitate method. Its adsorption properties towards Acid Red B (ARB) and the regeneration by catalytic combastion of organic compounds have been studied. The results show that the prepared CuO-Fe2O3 composite is an excellent adsorbent for ARB adsorption at acid condition. The presence of Cl^- has no effect on ARB adsorption. But the SO4^2- can inhibit ARB adsorption. After being recovered by the magnetic separation method, the adsorbent can be regenerated by catalytic oxidation of absorbate at 300℃ in air atmosphere. The combustion reactions of ARB in the presence or absence of CuO-Fe2O3 are studied by in situ diffuse refieclion FTIR. The results indicate that, in the presence of CuO-Fe2O3, the degradation temperature is significantly lowered by the catalysis of CuO-Fe2O3, and ARB can be oxidized completely without volatile organic compound by-product; in comparison, in the absence of CuO-Fe2O3, the temperature needed for oxidation of ARB is higher and the reaction is incomplete with some N-containing harmful compounds produced. The reusability of CuO-Fe2O3 is also studied in successive seven adsorption-regeneration cycles.  相似文献   

5.
La2Zr2O7 thermal barrier coatings (TBCs) with dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED) with ceramic balls added to the cathode region. Compared with the conventional CPED, when ceramic balls are used in the cathode region, the plasma discharge ignition current density decreases approximately 62-fold and the stable plasma discharges occur at the whole cathode surface. Such TBCs with a thickness of 100 μm exhibit a crack-free surface and are composed of pyrochlore-structured La2Zr2O7. Cyclic oxidation, scratching, and thermal insulation capability tests show that such TBCs not only exhibit high resistance to oxidation and spallation but also provide good thermal insulation. These beneficial effects are attributed to the excellent properties of TBCs, such as good thermal insulation because of low thermal conductivity, high-temperature oxidation resistance because of low-oxygen diffusion rate, and good mechanical properties because of the toughening effect of Pt particles.  相似文献   

6.
Al2O3 dispersion copper alloy powder was prepared by internal oxidation, and three consolidation methods—high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)—were used to prepare Al2O3 dispersion-strengthened copper (Cu–Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for HP and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.  相似文献   

7.
Nitric oxide (NO) and hydrogen peroxide (H2O2) have been shown to be important signaling molecules that participate in the regulation of several physiological processes. In particular, they have significant role in plant resistance to pathogens by contributing to induction defense genes. Here, whether NO and H2O2 participate in the resistance responses against Verticillium dahliae toxins (VD-toxins) and their effects on the expression of GSTgene are studied. The results reveal that NO and H2O2 are produced as part of a complex network of signals that respond to VD-toxins and may converge to function both synergistically and independently by inducing resistant responses. GSTgene is potentially involved in the resistance mechanism in the cotton suspension cells. NO induces the expression of GSTgene independently of H2O2. H2O2 may be a more potent signal in the resistance responses against VD-toxins.  相似文献   

8.
As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite (HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets (HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe-Cr solid solutions (Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.  相似文献   

9.
This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.  相似文献   

10.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

11.
为去除柴油机尾气中的氮氧化物(NOx),设计了一套基于介质阻挡放电形式的非热等离子体(non-thermal plasma,NTP)反应器。通过改变放电电压及模拟气体组分,考察了NTP对NOx的还原效果以及对BaO/Al2O3催化剂储存NOx的促进作用。结果表明,NTP直接还原NOx效率不高,但可将NO氧化成NO2;从NO向NO2的转化率随放电电压及含氧量的升高而增加;加入丙烯能提高直接净化NOx的效率;由于NTP的协同,催化剂的NOx储存能力在300℃下提高了68%。  相似文献   

12.
We report our investigation of the interaction of NO2 with the Au(997) vicinal surface by high-resolution photoelectron spectroscopy using synchrotron radiation as the excitation source. At 170 K, both core-level and valence-band photoemission results illustrate the decomposition of NO2 on the Au(997) surface at low NO2 exposures, forming coadsorbed NO(a) and O(a) species. After annealing at 300 K, NO(a) desorbs from Au(997) whereas O(a) remains on the surface. Upon annealing at 750 K, we observe no signal for adsorbed oxygen on Au(997). These results clearly demonstrate that thermal decomposition of NO2 is an effective method to generate oxygen adatoms on Au(997) under ultrahigh-vacuum conditions.  相似文献   

13.
The ruthenium-substituted polyoxometallic acid H6 [Ru(H2O)FeW 11O39 ]·18H2O was synthesized by stepwise acidification and stepwise addition of solutions of the component elements, and an ion-exchange-cooling method. The product was characterized using inductively coupled plasma spectrometry (ICP), Infrared Spectroscopy (IR), Ultraviolet Spectroscopy (UV), and X-ray diffraction (XRD). The results show that this complex has the Keggin structure. The determination of the thermal stability and proton conductivi...  相似文献   

14.
A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnPcS-TiO2@SiO2.X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were employed to characterize the catalyst.The photocatalytic degradation of rhodamine B (RhB) and the catalytic oxidation of o-phenylenediamine (OPDA) under visible light irradiation were used as probe reactions.The mineralization efficiency and the degradation mechanism were evaluated using chemical oxygen demand (COD Cr) assays and electron spin resonance (ESR),respectively.RhB was efficiently degraded by immobilized MnPcS-TiO2@SiO2 under visible light irradiation.Complete decolorization of RhB occurred after 240 min of irradiation and 64.02% COD Cr removal occurred after 24 h of irradiation.ESR results indicated that the oxidation process was dominated by the hydroxyl radical (·OH) and superoxide radical (O-·2) generated in the system.  相似文献   

15.
尿素/铵根溶液湿法同时脱硫脱硝特性实验研究   总被引:1,自引:0,他引:1  
针对氨/尿素溶液湿法同时脱硫脱硝工艺在工业应用中存在脱硝效率不高的问题,在鼓泡吸收反应器中采用不同的吸收剂和添加剂,考察了不同操作条件下湿法同时脱硫脱硝特性,并对吸收反应后溶液中的离子浓度和pH值进行了分析与研究.研究发现:在尿素/铵根溶液脱硫脱硝过程中,溶于液相中的氧对NO具有一定的氧化作用,而NO气相氧化是脱硝的主要作用机制;O2的存在是添加剂起催化作用的必要条件,SO2的存在对NO的吸收起到了协同促效作用.实验研究还发现,不同的添加剂对脱硫脱硝的作用机制和效果不同,醇胺类添加剂具有缓冲和催化作用,且混合醇胺的效果更好,而高锰酸钾作添加剂时,脱硫和脱硝过程是相互竞争的.实验中尿素溶液的脱硝效率最高,而单一氨水溶液的脱硝效率最低;尿素能抑制亚硝酸分解生成NO,碳酸氢铵的加入使得吸收液的pH值下降明显,不利于氮氧化物的脱除.  相似文献   

16.
通过发动机台架试验研究了F-T柴油引燃甲醇在柴油机上的NOx和PM排放以及二者之间的平衡问题。结果表明:柴油机燃用二元煤基燃料较F-T柴油NOx和PM排放最高降低45.8%和41.2%;0.30MPa和0.60MPa,1600r/min时,NOx排放较低;PM排放在2000r/min下最低,在1200r/min下最高;0.45MPa,1200r/min和2000r/min时,供油时刻为20°CA BTDC附近可以得到较低的PM排放和较低NOx排放,而在1600r/min下二者出现tread-off关系。F-T柴油引燃甲醇在柴油机上可以同时有效降低NOx和PM排放。  相似文献   

17.
Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss (Km) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the Km increased rapidly and the wear mechanism became adhesive wear.  相似文献   

18.
In this study, the fabrication of multilayer Al(Zn)–Al2O3 with different volume fractions of Al2O3 was investigated. Al and ZnO powders were milled by a planetary ball mill, after which five-layer functionally graded samples were produced through hot pressing at 580℃ and 90 MPa pressure for 30 min. Formation of reinforcing Al2O3 particles occurred in the aluminum matrix via the aluminothermic reaction. Determination of the ignition temperature of the aluminothermic reaction was accomplished using differential thermal and thermogravimetric analyses. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffractometery analyses were utilized to characterize the specimens. The thermal analysis results showed that the ignition temperatures for the aluminothermic reaction of layers with the highest and lowest ZnO contents were 667 and 670℃, respectively. Microstructural observation and chemical analysis confirmed the fabrication of Al(Zn)–Al2O3 functionally graded materials composites with precipitation of additional Zn in the matrix. Moreover, nearly dense functionally graded samples demonstrated minimum and maximum hardness values of HV 75 and HV 130, respectively.  相似文献   

19.
We explore nitric oxide (NO) effect on K^+in, channels in Arabidopsis guard cells. We observed NO inhibited K^+in, currents when Ca^2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N;tetraacetic acid) was not added in the pipette solution; K^+in currents were not sensitive to NO when cytosolic Ca^2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO elevates cytosolic Ca^2+ by activating plasma membrane Ca^2+ channels firstly, then inactivates K^+in, chartnels, resulting in stomatal opening suppressed subsequently.  相似文献   

20.
Atmospheric oxidizing capacity is the essential feature of urban and regional air. And OH and HO2 radicals are the key species indicating atmospheric oxidizing capacity. Using Guangzhou City as a case, this work has conducted field measurements of photochemistry relevant pollutants including O3, NOx, VOCs, H2O2, HNO2 and CO,SO2. The concentrations of OH radical are measured simultaneously by impregnated filter trapping and HPLC (IFTHPLC) method. The factors influencing OH levels are assessed. Based on understanding of OH and HO2 air chemistry, the production and removal rates of these 2 radicals are calculated. The results show that the budget of OH and HO2 can generally be closed, the radical transformation between OH and HO2 dominates the sources and sinks of them, and also the photolysis of HNO2 and HCHO is the significant source of OH and HO2 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号