首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
考虑一类差分Painlev$\acute{e}$ $I$方程 $$ \overline{f}+f+\underline{f}=\frac{\pi_1 z +\pi_2}{f}+\kappa_1\eqno{(*)} $$ 有限级超越亚纯解的零点、极点、不动点和Borel例外值, 同时也给出了差分Painlev$\acute{e}$ $I$方程(*)的有理函数解的存在性及其表示形式, 其中$\overline{f}=f(z+1), f=f(z), \underline{f}=f(z-1), \pi_1 , \pi_2 , \kappa_1 \in\mathbb{C}$.  相似文献   

2.
利用 亚纯函数的Nevanlinna值分布理论的差分模拟, 研究了非线性高阶差分方程$ P_{1}(z)\prod_{i=1}^{n}f(z+c_{i})=P_{2}(z)f(z)^{n} $ 亚纯解的零点,极点收敛指数和增长级,其中$n$是一个正整数,$c_i(i=1,...,n)$是非零复常数, $P_1(z),P_2(z)$是非零多项式.在给定条件下,得到了这类差分方程亚纯解的增长级的精确估计.  相似文献   

3.
主要介绍了近十年来复域差分及$q-$差分,差分方程及$q-$差分方程研究的主要成果,其中包括亚纯函数对数导数引理的差分模拟;Clunie引理和Mohon'ko引理的差分模拟; 慢增长亚纯函数的差分, 均差分的零点, 不动点的存在性; 差分多项式的值分布性质;差分Riccati方程与差分Painlev\'{e}方程亚纯解的性质;复域$q-$差分及$q-$差分方程的解析性质.  相似文献   

4.
为解决与毕达哥拉斯方程x2+y2=z2相关的整数矩阵方程问题, 利用矩阵的基本运算把整数矩阵方程问题转化成不定方程求解的问题, 从特殊情形逐步推广到一般情形, 研究了与毕达哥拉斯方程相关的一类二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} + {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $ ($\lambda \in \mathbb{Z}, \boldsymbol{I} $为单位矩阵), 并得到其全部解( X , Y ), 类似可得二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} - {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $的全部解.  相似文献   

5.
利用值分布理论,研究了几类非线性差分方程是否有有限级的超越亚纯解的问题,还考虑了:微分差分方程$~f^{n}(z)+M(z,f)=h(z)$是否存在有限级超越整函数解的问题,其中$~n\geq3$是整数, $~h(z)$是非零的有理函数,$~M(z,f)$是系数为小函数的线性微分差分多项式.  相似文献   

6.
研究了高阶微分方程$f^{(k)}+A_{k-1}f^{(k-1)}+\cdots+A_1f^{'}+A_0f=0$ 亚纯解的增长性.假设$b\neq 0$是复常数,定义指标集$\mathnormal{\Lambda}=\{a|a=c_{a}b,-1  相似文献   

7.
设 $n$ 为任意正整数. 著名 Erd\H{o}s-Straus 猜想是指当 $n\ge 2$ 时, Diophantine 方程 $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 总有正整数解 $(x,y,z)$. 虽然有许多作者研究这个猜想, 但是至今它还未被解决. 设 $p\ge 5$ 为任意素数. 最近, Lazar 证明 Diophantine 方程 $ \frac{4}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 在区域 $xy<\sqrt{z/2}$ 内没有 $x$ 与 $y$ 互素的正整数解 $(x,y,z)$. 同时, Lazar 提出问题: 在上述方程中以 $5/p$ 替换 $4/p$, 是否有类似结果? 这也是 Sierpinski 提出的一个猜想. 在本文中, 我们证明 Diophantine 方程 $\frac{a}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 没有满足\ $x, y$ 互素且\ $xy<\sqrt{z/2}$ 的正整数解 $(x,y,z)$, 其中 $a$ 为满足\ $a<7\le p$ 的正整数. 这回答了上述 Lazar 问题, 并推广了 Lazar 的结果. 我们的证明方法和工具主要是利用有理数\ $\frac{a}{p}$ 的连分数表示.  相似文献   

8.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

9.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

10.
本文证明了满足方程 $\det\left(\frac{\partial^{2}u}{\partial \xi_{i}\partial \xi_{j}}\right) = \exp \left\{-\sum d_i \frac{\partial u}{\partial \xi_{i}} - d_0\right\}$ ( 其中 $d_0$, $d_1$,...,$d_n$ 是常数) 的任何光滑严格凸的整体解 $u$ 一定是二次多项式. 我们推广了著名的 J\"{o}rgens-Calabi-Pogorelov 定理.  相似文献   

11.
考虑周期系数高阶线性微分方程f~((n))+∑j=1 n[P_(n-j)(e~z)+Q_(n-j)(e~(-z))]f~((n-j))=R_1(e~z)+R_2(e~(-z)),其中n≥2,P_j(z),Q_j(z)(j=0,1,2,…,n-1),R_1(z)和R_2(z)均是关于z的多项式,且Pj(z),Qj(z)(j=0,1,2,…,n-1)不全为常数.在条件degPjdegP0(j=1,2,…,n-1)下,获得方程的次正规解的表示.  相似文献   

12.
该文首先应用代数数论的方法证明了不定方程~$x{^2}+4{^n}=y{^9}$~在~$x\equiv 1 \pmod{2}$ 时无整数解, 再证明不定方程~$x{^2}+4{^n}=y{^9}$~在~$n \in\{6, 7, 8\}$~ 时均无整数解, 进而证明不定方程~$x{^2}+4{^n}=y{^9}$~仅当~$n\equiv 0 \pmod{9}$~和~$n\equiv 4 \pmod{9}$ 时有整数解, 且当~$n=9m$~时, 其整数解为~$(x,y)=(0,4{^m})$; 当~$n=9m+4$~时, 其整数解为~$(x,y)=(\pm16\times2{^{9m}},2\times4{^m}),$~ 这里的~$m$~为非负整数. 进一步, 根据~$k=5,9$ 的结论, 文章提出了一个关于不定方程~$x{^2}+4{^n}=y{^k}$ $(k$ 为奇数$)$ 的整数解的猜想, 以供后续研究.  相似文献   

13.
研究了亚纯函数的微分多项式f~nf~′和g~ng~′IM分担一个多项式P(z)的唯一性问题,证明了当n22且多项式P(z)的次数小于等于n时,则f(z)=tg(z),或者f(z)=λ_1e~(λ∫P(z)dz),g(z)=2e~(-λ∫P(z)dz),其中,t,λ1λ2,λ为常数。  相似文献   

14.
在方程系数A_{0}的型起控制作用的条件下,研究了高阶非齐次线性微分方程 f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{0}(z)f=F(z)解的增长性,得到了上述微分方程解的增长级和零点的一些精确估计  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号