首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用研磨的方法以稀土氧化物Nd_rO_3对LiCoO_2进行表面修饰.扫描电镜(SEM)表明,Nd_2O_3包覆在LiC_oO_2的表面.对包覆后的LiC_oO_2:正极材料的电化学性能进行了研究,充放电循环测试表明,表面包覆2%Nd_rO_3的LiC_oO_2正极材料的电化学性能最好,以1 C倍率充放电循环(3.0~4.4 V)80周后,放电容量仍可达到141 mAh/g.X射线衍射(XRD)和循环伏安(CV)测试表明,包覆后提高了LiC_oO_2的结构稳定性.  相似文献   

2.
以氢氧化锂、醋酸铬、醋酸锰为原料,用溶胶凝胶辅助高温球磨法合成了尖晶石型LiCr_xMn_(2-x)O_4(x=0.05,0.1,0.2)正极材料.研究了掺杂不同量Cr对材料的相结构、形貌和充放电性能的影响,并与未掺杂的LiMn_2O_4对比.结果表明:掺杂Cr后材料的容量保持率相对LiMn_2O_4有很大提高;材料的放电比容量随着掺杂量的增大逐渐减小,当x=0.2时放电比容量已低于LiMn_2O_4;当x=0.05时,所制备产物的充放电性能最佳,在0.1倍率下,首次放电容量达到119.6 m Ah/g,循环40次后放电容量保持率为97.4%.而且,从0.1到2.0不同倍率下循环100次后放电容量保持率为96.3%.  相似文献   

3.
利用溶剂热法制备了花环状Co_3O_4材料,并通过低温水解正硅酸乙酯工艺在Co_3O_4表面沉积SiO_2纳米层.采用XRD、FTIR、SEM、EDS、BET技术对材料的结构和形貌进行表征;应用充放电测试、循环伏安法和电化学阻抗对材料的电化学性能进行细致研究.结果表明,SiO_2颗粒均匀包覆在花环状Co_3O_4表面,SiO_2包覆显著改善了Co_3O_4复合材料的循环稳定性.循环稳定性的改善主要归因于SiO_2包覆可以有效缓解锂离子嵌入脱出过程中Co_3O_4的体积膨胀,进而改善了锂离子的扩散动力学行为.  相似文献   

4.
为获得高电压下高容量的LiCoO2正极材料,采用Li2O-AlO-SiO2锂快离子导体对LiCoO2进行了表面包覆研究,结果显示,Li2O-AlO-SiO2能均匀分布在LiCoO2颗粒表面,包覆后材料的循环性能、倍率性能及安全性能均有很大提高;3.0~4.35 V、500周循环后Li2O-AlO-SiO2包覆样品容量保持率为81.2%,未包覆的LiCoO2450周循环后容量保持率为64.6%。Li2O-AlO-SiO2还可以提高材料的导电性,包覆后的材料5 C倍率放电容量保持率高达84.8%,未包覆的材料仅为71.9%。包覆后的LiCoO2正极材料的安全性能也都有明显改善。  相似文献   

5.
采用高温固相法制备纯相LiFePO_4、碳包覆的LiFe_(1-x)Mn_xPO_4(x=0.0,0.1,0.3,0.5)5个样品.利用XRD、SEM、VSM、XPS及CT-2001A对材料的结构、形貌、磁性和电化学性能等进行测量.实验结果表明,未掺杂与掺杂的样品均没有明显的杂相,且都是橄榄石结构;在100,200,300 K下,纯相LiFePO_4、碳包覆LiFe_(1-x)Mn_xPO_4(x=0.0,0.1,0.3,0.5)、商业化的正极材料碳包覆磷酸铁锂6个样品都具有弱铁磁性,且磁性强度不同.所有样品都存在三价铁离子,其对应于γ-Fe_2O_3;LiFePO_4的电化学特性与引入的γ-Fe_2O_3杂质有密切的关系;磁测量和XPS谱可以敏感地检测出γ-Fe_2O_3杂质的存在,它们提供了两种检测磷酸铁锂正极材料质量的有效技术.  相似文献   

6.
采用碳热还原法合成橄榄石型LiFePO4正极材料,并用溶胶-凝胶法在其表面修饰La2O3颗粒。通过X射线衍射(XRD)、场发射扫描电镜(FE-SEM)等方法对表面修饰前后的LiFePO4进行表征,分析了表面修饰前后LiFePO4物理性质的变化,并进行了恒流充放电测试和循环伏安测试,研究了表面修饰对LiFePO4电化学性能的影响。结果表明,La2O3表面修饰没有改变LiFePO4材料的晶体结构,LiFePO4材料经La2O3修饰后,其电化学性能显著改善。  相似文献   

7.
Li3V2(PO4)3是当今较新型的锂离子电池正极材料之一,其显著优点之一是在大容量动力锂离子电池研发方面拥有巨大的应用潜力.研究表明,Li3V2(PO4)3跟LiCoO2的放电平台和能量密度相同,但是其安全性以及热稳定性要远远优于LiCoO2,同样强于LiMn2O4和LiFePO4.较之LiFePO4,单斜晶系的Li3V2(PO4)3化合物拥有更高的Li+离子扩散系数以及更高的放电电压(3.6V、4.1V和4.6V)和能量密度(用碳包覆后为2 330 mWh/cm3).因此,对近十多年来单斜晶Li3V2(PO4)3的主要合成工艺,碳包覆及掺杂改性等方面的研究进行综述,并对单斜晶Li3V2(PO4)3正极材料的晶体结构、充放电机理、性能特点分别进行了介绍.  相似文献   

8.
磷酸锰锂(LiMnPO_4)是一种非常有应用前景的锂离子电池正极材料,化学共沉淀法是制备这种材料的理想方法。针对LiMnPO_4正极材料目前研究过程中存在的电子电导率低和锂离子扩散慢等问题,本文从Mn_3(PO_4)_2、MnPO_4、NH_4MnPO_4等不同Mn-P前驱体合成LiMnPO_4出发,综述了近年来基于化学共沉淀工艺的两步法合成LiMnPO_4正极材料并采用碳包覆和离子掺杂两种手段改性的国内外研究进展。对当前研究过程中存在的不同Mn-P前驱体获得LiMnPO_4产品性能差异的问题,认为应该通过进一步地探讨化学共沉淀过程的反应机理并进行相关反应动力学及热力学研究解决。本文为LiMnPO_4正极材料的研究及产业化提供了参考。  相似文献   

9.
λ-MnO_2是锂离子选择性吸附材料,适用于从成分复杂锂含量低的盐湖卤水中提取锂,然而这种方法依然存在着吸附平衡时间长、因锰溶损而导致的重复使用性差等问题.将λ-MnO_2制作成电极,通过电化学辅助MnⅢ/MnⅣ转换被认为是提高锂吸附速率的途径之一.为了减少电化学辅助提锂过程中锰溶损现象、提高电极重复使用性能,本研究提出聚吡咯(PPy)包覆λ-MnO_2颗粒制作λ-MnO_2/PPy复合电极.电化学研究结果表明,PPy的包覆提高了LiMn_2O_4颗粒间及其与基体电极之间的导电性,加之PPy包覆层的物理阻隔作用,显著改善了电极中活性物质的提锂效率和重复使用性能.研究结果表明,利用λ-MnO_2/PPy电极进行电化学辅助锂离子提取的效率可达到17.1mg·g~(-1)·h~(-1).  相似文献   

10.
过渡金属氧化物作为锂离子电池(lithium-ion batteries,LIBs)阳极材料时具有较高的理论容量,但因其电导率低,以及充放电过程中的体积膨胀效应常会导致容量的快速衰减.碳包覆是提升金属氧化物导电性的有效方法,二者之间的协同效应也可以有效提升材料的电化学性能.以MnO_2纳米线为模板制备出MnO_2@ZIF-67有机-无机杂化纳米结构,再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn_2O_4纳米线复合材料(MnO@CoMn_2O_4@N-C).ZIF-67的有机配体在高温煅烧过程中发生碳化反应,产生了氮掺杂碳,提升了导电性.当作为锂离子电池阳极材料时,MnO@CoMn_2O_4/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA·h/g,并且在100次充放电循环后的放电比容量仍保持在925.8 mA.h/g,在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA·h/g,同时具有优异的倍率循环性能.这种优异的电化学储能特性主要来源于复合材料的特殊结构,以及氮掺杂碳的包覆.  相似文献   

11.
尖晶石型LiMn2O4作为锂离子电池的正极材料之一是近年来的研究热点。尖晶石型LiMn2O4的合成方法有许多种,主要有固相法、水热合成法、共沉淀法、溶胶一凝胶法等。对各种合成方法的优缺点进行比较。同时就近年来科技工作者对LiMn2O4的性能优化作综合论述,主要包括掺杂和表面包覆,并对今后LiMn2O4的发展方向做了阐述。  相似文献   

12.
锰酸锂动力电池体系研究   总被引:1,自引:0,他引:1  
从负极材料、电解质溶液、电压范围3方面研究了适合于锰酸锂动力电池的最佳体系,结果表明:成本低廉的天然石墨非常适合作为锰酸锂动力电池的负极材料,使用改良电解质溶液后电池的循环寿命可延长200次,锰酸锂电池在3·0~4·2V之间稳定性最好,使用寿命最长,体系确定后的锰酸锂动力电池安全性能、循环寿命、高温性能、低温性能良好。  相似文献   

13.
陈猛  李胜军 《应用科技》2004,31(6):57-59
尖晶石型LiMn2O4是一种极有前途的锂离子电池正极材料,具有原材料资源丰富、价格低、环境污染小、合成工艺简单等优点,但在循环及存放的过程中,存在容量衰减,在高温情况下尤为严重.对尖晶石型LiMn2O4材料的容量衰减机理进行了探讨,并对该正极材料的金属离子掺杂改性研究进行了综述.  相似文献   

14.
Spinel lithium titanate(Li_4Ti_5O_(12)) has the advantages of structural stability, however it suffers the disadvantages of low lithium-ion diffusion coefficient as well as low conductivity. In order to solve issues,we reported a simple method to prepare carbon-coated Li_4Ti_5O_(12)/CNTs(C@Li_4Ti_5O_(12)/CNTs) using stearic acid as surfactant and carbon source to prepare carbon coated nanosized particles. The obtained Li_4Ti_5O_(12) particles of 100 nm in size are coated with the carbon layers pyrolyzed from stearic acid and dispersed in CNTs matrix homogeneously. These results show that the synthesized C@Li_4Ti_5O_(12)/CNTs material used as anode materials for lithium ion batteries, presenting a better high-rate performance(147 m Ahg~(-1)at20 C). The key factors affecting the high-rate properties of the C@Li_4Ti_5O_(12)/CNTs composite may be related to the synergistic effects of the CNTs matrix and the carbon- coating layers with conductivity enhancement. Additionally, the amorphous carbon coating is an effective route to ameliorate the rate capability of Li_4Ti_5O_(12)/CNTs.  相似文献   

15.
采用交流阻抗法研究了锂离子在LiMn2O4正极材料中的界面过程.结果表明:LiMn2O4电极的交流阻抗复平面图中高频区的半圆,是由电解液中的锂离子在LiMn2O4表面吸附形成表面层的电阻和电容引起的,中频区的半圆是由电极LiMn2O4内的电荷转移反应电阻和双电层电容引起的,而低频区的直线则是由锂离子在LiMn2O4中的扩散引起的.  相似文献   

16.
主要综述了采用软化学法制备尖晶石型LiMn2O4锂离子电池正极材料的各种方法,其中包括Pechini、溶胶—凝胶、微乳化等方法。  相似文献   

17.
100Ah动力电池采用尖晶石锰酸锂作为正极材料,400Ah电池组应用于纯电动车,实验表明电池具有良好的电化学性能和安全性能。  相似文献   

18.
该文重点介绍了作者实验室的PLD系统,并介绍一个实例:在不锈钢衬底上镀LiMn2O4薄膜。  相似文献   

19.
微米级锂离子电池正极材料尖晶石LiMn2O4的合成及性能   总被引:2,自引:0,他引:2  
对微米级和常规固相反应方法制备的锂离子电池正极材料尖晶石LiMn2O4的结构和性能进行了比较,并采用扫描电子显微镜(SEM),X-射线衍射(XRD)及慢扫描循环伏安(SSCV)、交流阻抗(EIS)的电化学测试方法对材料进行了表征.结果表明微米级的尖晶石LiMn2O4,颗粒均匀,晶体结晶性好;在10次慢扫描循环伏安曲线中,容量衰减相对较小;从材料的交流阻抗谱中可看出,随着循环的进行,靠近循环伏安峰电位附近的电荷转移电阻变化小.  相似文献   

20.
过渡金属氧化物作为锂离子电池(lithium-ion batteries, LIBs)阳极材料时具有较高的理论容量, 但因其电导率低, 以及充放电过程中的体积膨胀效应常会导致容量的快速衰减. 碳包覆是提升金属氧化物导电性的有效方法, 二者之间的协同效应也可以有效提升材料的电化学性能. 以MnO$_{2}$纳米线为模板制备出MnO$_{2}$@ZIF-67有机-无机杂化纳米结构, 再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn$_{2}$O$_{4}$纳米线复合材料(MnO@CoMn$_{2}$O$_{4}$@N-C). ZIF-67的有机配体在高温煅烧过程中发生碳化反应, 产生了氮掺杂碳, 提升了导电性. 当作为锂离子电池阳极材料时, MnO@CoMn$_{2}$O$_{4}$/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA$\cdot$h/g, 并且在100次充放电循环后的放电比容量仍保持在 925.8 mA$\cdot$h/g, 在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA$\cdot$h/g, 同时具有优异的倍率循环性能. 这种优异的电化学储能特性主要来源于复合材料的特殊结构, 以及氮掺杂碳的包覆.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号