首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of anionic-nonionic mixed surfactant (SDBS-TX100) on the uptake of phenanthrene and pyrene by ryegrass in a hydroponic system was studied, and the influence factors including the com-positions and concentrations of mixed surfactants and the compounds properties were also discussed. The results showed that SDBS-TX100 mixtures with certain compositions and concentrations could enhance the uptake of phenanthrene and pyrene by ryegrass, which could be attributed to the im-proved uptake capacity of ryegrass roots for phenanthrene and pyrene. SDBS-TX100 can enhance the uptake of phenanthrene and pyrene by ryegrass in a wider range of surfactant concentrations (0―0.8 mmol/L) in comparison with corresponding single surfactants, and the maximal contents of phenan-threne and pyrene in ryegrass roots were obtained with the concentrations of SDBS-TX100 around the corresponding critical micelle concentrations. The uptake of phenanthrene and pyrene by ryegrass increased with the increasing mole fraction of SDBS in mixed surfactant solutions, and SDBS-TX100 mixture with a mole ratio of SDBS to TX100 at 9:1 had the greatest capacity in enhancing the uptake of phenanthrene and pyrene, at which the corresponding maximal concentrations of phenanthrene and pyrene in ryegrass roots were 216 and 8.16 times those without surfactants, respectively. Results from this study indicate that the anionic-nonionic mixed surfactants (SDBS-TX100) would be a preferred selection for the application of surfactant-enhanced phytoremediation technology to contaminated soils.  相似文献   

2.
The acute toxicity of Sodium dodecylbenzene sulfonate (SDBS) to subcamersed macrophyte Hydrilla verticillata (L.f) Royle was studied. Chlorophyll contents and the activities of 3 antioxidant enzymes: superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) in the leaves were investigated under different concentrations of SDBS, The chlorophyll contents in leaves of experimental plants decreased gradually, while the electrical conductivity of culture solution increased gradually with the increased dose of SDBS. Under higher concentrations of SDBS (32 mg/L and 128 mg/L) treatment, SOD lost its activities completely after 24 h. The native PAGE analysis indicated the diversity of POD isoenzymes was obvious under different concentrations of SDBS stress.  相似文献   

3.
The GbKTN1 gene was isolated from 10 DPA fiber cells of Gossypium barbadense using 5′RACE/3′RACE.Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame(ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF of GbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that the GbKTN1 was a single copy gene in G barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed that GbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA of GbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. The GbKTN1 cDNA was transformed into S. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressing GbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongation in vivo.  相似文献   

4.
It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field investigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots〉stems=main roots〉old leaves〉young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the aboveground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosynthetic rate, transpiration rate and biomass production of tea plants.  相似文献   

5.
Cloning and expression of putative ethylene receptor genes in soybean plant   总被引:1,自引:0,他引:1  
Ethylene plays important roles in plant growth, development, and stress responses, and ethylene receptors have been identified and studied extensively in various plant species. Here we report the cloning of four ethylene receptor genes from soybean, i.e. GmETR1, GmERS1, GmETR2 and GmEIN4. Construction of the phylogenic tree showed that GmETR1 and GmERS1 belong to subfamily I whereas GmETR2 and GmEIN4 belong to subfamily II. The four ethylene receptor genes showed different tissue-specific expression patterns in roots, stems, leaves, cotyledons, flowers, pods and seeds of soybean. These genes were differentially regulated by various abiotic stresses and plant hormones. The possible roles of the four genes in soybean plant were also discussed.  相似文献   

6.
Matrix-bound phosphine (PH3),a new form of phosphorus,was found in sediment of Jiaozhou Bay in December 2001,Concentration and distribution of PH3 in different layers of sediment with different stations were analyzed.The results show that PH3 concentrations are various with different layers and different stations.PH3 concentrations in the bottom layer of sediment (20-30 cm) are usually higher than those in the surface layer (0-4cm) ,The highest PH3 concentration in our investigation reaches 685 ng/kg (dry),which is much higher than those in terrestrial paddy soil ,marsh and landfill that have been reported up to now,The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment.However,the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R^2=0.83).It is considered that PH3 in sediment of Jiaozhou Bay is mainly produced from the decomposition of organic phosphorus in the anaerobic condition,and so PH3 concentrations are related to organic phosphorus concentration and anaerobic environment in sediment,The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phosphorus supplement and biogeochemical cycle in Jiaozhou Bay.  相似文献   

7.
To examine whether lignin-like compound is correlated with silica precipitation in grass, a series of simulated chemical experiments were carried out at ambient temperature and pressure, close to cell wall pH, with phenol polymerization catalyzed by peroxidase in silicon solution. The experiments showed that phenol polymer (a kind of lignin-like substance) caused silica nanosphere precipitation similar to those caused by protein in diatom cell wall previously reported by other authors. The sphere diameter varied with different kinds of phenol and the concentrations of phenol and silicon. Silicon precipitation had phenol and silicon saturation effect, meaning that when the concentration ratio of soluble silicon to phenol exceeded a certain value, the amount of silicon precipitation would decrease.  相似文献   

8.
Evaluation with the pot assay at seedling stage in greenhouse showed that oat (Avena sativa) was highly resistant to take-all disease to which, however, wheat (Triticum aestivum) was extremely susceptible. The oat roots were shown to be inhibitory to the invasion and spread of take-all causing fungus G. graminis var. tritici by the following criteria: (ⅰ) less infection sites were observed (about 1/7 of those in wheat); (ⅱ) the ectotrophic growth of G. graminis var. tritici on oat roots was much slower than that on those of wheat, and the runner hyphae appeared as kidney- or fork-shaped hyphopodia on the surface of oat roots which could not be discerned on that of wheat roots; (ⅲ) the period from inoculation to penetration into the epidermis of oat roots was about 2.9 times as long as that of wheat; (ⅳ) the infection hyphae were hindered substantially when it was about to penetrate into the epidermis of oat roots with the mycelium deformed; and (ⅴ) the cortical layer of oat roots was revealed to be unsuitable for the G. graminis var. tritici infestation as some lysed hyphae were found therein, and the spread of hyphae from the first layer of cortex to the pericycle needed 108 h, about 1.8 times as long as it did on wheat roots.  相似文献   

9.
Liver, as an important metabolic and detoxicological organ of human body, can be used as a good bioindicator for evaluating body burden of environmental pollutants. Its elemental contents and their chemical forms are closely related to the status of human health and disease. In this paper, the liver samples collected from normal subjects were separated to different subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol by differential centrifugation. Then their concentrations of heavy metals of As, Pb, Cd, and Hg were determined by atomic absorption and atomic fluorescent spectroscopy. Our results show no significant difference with literature ones when comparing their gross concentrations. In the case of their subcellular distribution, the Hg concentrations are higher in mitochondrial, microsomal and cytosolic fractions; the Cd concentrations are higher in cytosolic and mitochondrial fractions, while As highest in nuclear fraction. The highest concentration of Pb is found in microsomal fraction with similarity to Fe. Mercury in liver is mainly in the form of inorganic, and methylmercury ranged from 9% to 50% with the average value of 20.9% 13.3%. These results indicate that the cellular distribution and the accumulated target organelles are quite different among these heavy metals, which suggest their various pathways and toxic mechanism in vivo.  相似文献   

10.
PCDD/Fs in the urban air of Dalian,China were monitored with high-volume active sampler from November 2009 to October 2010.The concentration of Cl 4-8 DD/Fs ranged from 3065 to 49538 fg m-3,with an average of 10249 fg m-3.The international toxic equivalents(I-TEQ) value of that was 61.8 1182 fg m-3,with an average of 235 fg m-3,which was comparable to those in the other urban locations around the world.It was found that the Cl 4 8 DD/Fs appeared to be present mainly in the particle phase during winter,spring and autumn,while during summer which were dominantly in gas phase.The ratio of Cl 4-8 DD/Fs present in particle phase increased with the increasing level of chlorination.The concentrations of PCDFs and PCDDs decreased with the increase of chlorinated level,while the concentrations of 2,3,7,8-PCDDs congeners increased with the increase of chlorination level.The homolog profiles of the concentrations of PCDFs presented were higher than those of the PCDDs,which indicated the PCDD/Fs pollution source of the air in Dalian was characteristic for thermal source pollution.The correlation analysis of meteorological parameters with the concentrations of Cl 4-8 CDD/Fs was conducted using SPSS packages,and it was found that the ambient temperature and atmospheric pressure were important factors influence the concentration of PCDD/Fs in the air.The respiratory risk and intake dioxins of the residents around the sampling sites were studied in the paper.It was found that Junge-Pankow model was much more accurate in predicting the gas-particle partitioning behavior of PCDD/Fs homologues during winter,while the Harner-Bidleman model shows better agreement with the measured data during winter and summer.  相似文献   

11.
在温室内以长白落叶松幼苗为材料进行砂培试验,探讨了4种不同氮素浓度(1、4、8、16 mmol/L代号分别为N1、N4、N8、N16)处理对长白落叶松幼苗生物量以及根、茎、叶氮磷分配的影响。结果表明:①氮素供给浓度显著影响幼苗生物量,7、8、9月份均在N8水平下达最大,从7月份到9月份,叶片生物量占全株比例逐渐降低,而根系生物量所占比例逐渐增加。②随着供氮水平的提高,苗木根、茎、叶中氮浓度明显增加。生长末期根、茎、叶中氮浓度平均达到生长初期的1.46、1.48、1.17倍。不同氮处理下幼苗根、茎和叶全磷浓度呈现波动性变化。③幼苗体内氮贮量随着落叶松的生长呈明显上升趋势。9月份全株氮贮量比7月份平均增加了2.86倍。氮贮量分配在不同部位有很大不同,分配到叶片中的比例在7月份最高,平均为60%,而分配到幼苗根系中氮贮量的比例随苗木的生长而逐渐增加,在9月份相对值最高,达到41%。不同氮处理之间氮贮量分配比例相差不大。④长白落叶松幼苗根、茎、叶磷贮量变化规律与氮贮量一致,只是变化幅度低于氮。  相似文献   

12.
3-吲哚乙酸和水杨酸对芥菜型油菜耐受/积累铅的影响   总被引:1,自引:0,他引:1  
应用盆栽实验研究土壤受到铅污染时,外源3-吲哚乙酸和水杨酸对芥菜型油菜耐受和积累铅的影响.过量铅降低芥菜型油菜的生物量和叶绿素含量,增加SOD活性和MDA含量.添加外源IAA和SA增加芥菜型油菜的生物量和叶绿素含量.添加IAA增加芥菜型油菜的SOD活性和MDA含量,而施用SA则降低芥菜型油菜的SOD活性和MDA含量.添加外源SA对芥菜型油菜体内铅含量影响不显著.IAA单独施用或IAA/SA联合处理都显著增加芥菜型油菜体内铅含量.  相似文献   

13.
为了探讨Cd、Pb、Cu单一胁迫下4个桂花品种(密结银桂、天香台阁、柳叶黄、满条红)的生长适应性,采用盆栽试验法,研究不同重金属处理(Cd:0,50,100,200mg·kg~(-1);Pb:0,100,500,1 000mg·kg-1;Cu:0,50,100,200mg·kg~(-1))下桂花幼苗的生长量及吸收积累特性.结果表明:(1)低浓度Cd、Pb、Cu处理对4个桂花品种生长没有明显的伤害现象,甚至表现出促进作用,而较高浓度的重金属胁迫明显抑制了4个桂花品种的生长;(2)单一重金属胁迫下,4个桂花品种幼苗根、茎、叶组织中重金属含量伴随处理浓度的增加而增加;当受到胁迫后,重金属主要积累在幼苗的根部,只有少量重金属转移到茎、叶中;(3)一定程度上,4个桂花品种对Cd、Pb、Cu污染均有较强的耐性,其在重金属污染土壤的修复中具有一定的应用价值.建议Cd污染区域选用天香台阁,Pb污染区域选用柳叶黄,Cu污染区域可选用密结银桂.  相似文献   

14.
内蒙古半干旱区树木非结构性碳、氮、磷的分配格局   总被引:3,自引:0,他引:3  
为探讨半干旱区树木各器官中养分浓度的分配格局、养分之间的化学计量关系,以及植物器官养分浓度与树种、土壤养分条件之间的关系,选取内蒙古东南缘的两种天然的典型树种(白桦和白杄),对其叶片、树干、基部最粗根以及根尖中的总非结构性碳水化合物(TNC)、氮(N)和磷(P)浓度进行分析。结果表明:TNC浓度在叶片中最高,在根尖中最低,两者的浓度差异在53%以内;而N和P浓度在叶片和根尖中最高,树干和基部最粗根中最低,不同器官最大差异达98%。这种分配格局与各器官的生理功能(碳水化合物的生产、养分的吸收和储藏)密切相关。此外,白杄的TNC∶N和TNC∶P均大于白桦,这些格局不仅和树种本身的生理特性有关,而且反应了土壤的养分状况。  相似文献   

15.
采用营养液培养法、亚细胞组分差速分离技术和电感耦合等离子体发射光谱技术(ICP-AES),研究不同浓度Cd2+(1、10、100μmol/L)胁迫下,毛葱幼苗不同部位Cd、Fe、Mn、Cu、Zn等金属元素吸收积累的特点,以及根和叶中Cd的亚细胞分布状况.结果表明:(1)随着营养液中Cd2+浓度的增加,毛葱根、茎、叶各器官中Cd的含量均显著增加,Cd主要集中在根部,向地上部分的运输量很少;(2)Cd的吸收积累改变了根、茎、叶中Fe、Mn、Cu、Zn等矿质元素的含量;(3)叶和根各亚细胞组分中Cd的含量为:细胞壁组分细胞质可溶性组分细胞核、叶绿体组分线粒体组分;(4)随着营养液中Cd2+浓度的增加,细胞壁和细胞质组分中Cd增加的幅度远远大于线粒体、细胞核和叶绿体组分,Cd在细胞壁和细胞质组分中的分配比例呈上升趋势,在线粒体、细胞核及叶绿体中的比例呈下降趋势.这说明植物吸收的Cd主要积累在根部,细胞水平上,多数的Cd被细胞壁沉淀螯合和液泡区室化,避免了Cd对新陈代谢旺盛的亚细胞组分的影响.  相似文献   

16.
铜在鸭跖草细胞内的分布和化学形态研究   总被引:14,自引:0,他引:14  
运用差速离心法和化学试剂逐步提取法分析了Cu在鸭跖草Commelina communis根、茎、叶的亚细胞分布及贮存形态.结果表明,细胞壁是鸭跖草根中Cu结合的主要位点,其次为含核糖核蛋白体的细胞溶质部分,而在叶中,Cu主要分布在含核糖核蛋白体的细胞溶质部分中,其次分布在含细胞壁部分;茎中,随着外界Cu浓度的提高,Cu向细胞壁部分的分配减少,而向含核糖核蛋白体的细胞溶质部分的分配增加.根、茎、叶中细胞核、叶绿体和线粒体等细胞器结合Cu量较少.在各种形态铜中,根部以去离子水提取态占优势,茎部和叶部,以去离子水和乙醇两种提取态占优势,其它结合形态的Cu在根中比例较低,在茎、叶中所占的比例有所增加,显示鸭跖草体内Cu的分布特征和形态特征与其耐性和富集Cu有密切联系.  相似文献   

17.
栽培温度及种源对青钱柳β谷甾醇含量的影响   总被引:1,自引:0,他引:1  
在建立测定青钱柳(Cyclocarya paliurus)中β谷甾醇含量方法的基础上,探讨了不同温度对3个青钱柳种源1年生苗木中β谷甾醇含量的影响。结果表明:不同温度对青钱柳苗茎中β谷甾醇的含量影响显著,而对叶片和根中β谷甾醇的含量影响不显著(p<0.05)。在30、25和20 ℃条件下,青钱柳苗茎中β谷甾醇平均质量分数分别为1.50 %、0.92 %和1.72 %;不同器官青钱柳β谷甾醇含量有差异性,以叶的含量为最高,茎次之,根的含量最低。温度和种源交互作用对青钱柳根部、叶片β谷甾醇含量的影响极显著。相对的高温和低温都有利于青钱柳根和茎中β谷甾醇的合成,但叶中的含量以在25 ℃时最高。  相似文献   

18.
目的 了解不同林龄榧树根、枝、叶的生态化学计量特征和内稳性特征的变化情况,为榧树的科学管理和保护提供基础数据。 方法 以浙江省诸暨市香榧国家森林公园0~100、≥100~300、≥300~500和≥500 a共4个林龄段的实生榧树为研究对象,通过野外采集榧树植株样品(根、枝、叶)和0~20 cm层土壤样品,分析不同林龄榧树根、枝、叶的碳(C)、氮(N)、磷(P)含量及其化学计量特征变化和榧树内稳性特征。结果 不同林龄榧树C、N、P含量及化学计量特征均无显著差异,根、枝、叶的C、N、P含量均以≥300~500 a的榧树表现最高,枝和叶的C、N含量以≥500 a的榧树最低,而根P含量以≥100~300 a的最低;不同林龄榧树叶的N/P(N、P质量比)均小于N限制的阈值(14);榧树根、枝、叶的C、N、P含量存在一定的变化趋势,整体上表现为叶>枝>根,叶和枝的C、P含量显著高于根的,叶N含量显著高于根和枝的,各器官N和P含量均为正相关关系,且枝中N、P相关性达到极显著水平(P <0.01);榧树根、枝、叶的化学计量特征存在差异,根和枝的C/N(C、N质量比)显著高于叶的,根的C/P(C、P质量比)显著高于枝、叶的; 内稳性指数HN/P(20.00)>HP(11.76),即内稳性以N/P大于P。结论榧树C、N、P化学计量特征随林龄增长未表现出差异,而榧树根、枝、叶的C、N、P含量及化学计量特征存在差异,并且榧树整个生长过程中均受到N素的限制,需要合理施N肥来促进榧树的生长。  相似文献   

19.
ICP-MS法测定三丫苦中微量元素的研究   总被引:1,自引:0,他引:1  
采用微波消解技术ICP—MS法测定了三丫苦根、茎、叶中的Li,B,Mg,V,Mn,Cu,As,Sr,Mo,Cs,Ba,Ph,Cr,Fe,Ni,Co,Sn,Sb,Bi,Cd20种元素的含量.结果表明:各元素的检出限为0.007~0.883mg·L^-1,相对标准偏差为0.19%~3.8%,回收率为81.1%~115.1%.三丫苦植物的根、茎、叶中含有较高的Mg,Mn,Fe,B,Cu,Sr,Ni,Ba微量元素,具有一定的药用价值.该方法操作简便、测量快速、结果准确,易于推广.  相似文献   

20.
采用组织块法对玉兰不同组织内生菌进行了分离,共纯化得到69株内生真菌.结果发现,玉兰植物的根、茎、叶中均可以分离得到内生真菌,根组织中的种类、数量明显多于茎和叶,占到分离总菌株数量的52%.其中分离于玉兰植物根部的No.37菌株对供试的7种病原真菌和5种病原细菌具有较强的抑制作用.经形态鉴定该菌株为层出镰刀菌.在100...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号