首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
设X为有限集合,()X为X上的全变换半群,设E为X上任一非平凡等价关系,变换半群TE(X)定义为TE(X)={f∈()X:()(a,b)∈E,(f(a),f(b))∈E}.讨论了半群TE(X)的由幂等元生成的子半群T2,以及由亏值为1的幂等元作为生成元时,T2的极小生成元集,并且求出了这个极小生成集的元素个数.  相似文献   

2.
设TX为集合X上的全变换半群,E为X上一个非平凡的等价关系.令TE(X)={f∈TX∶(a,b)∈E■(af,bf)∈E}则它在映射的合成运算下做成TX的一个子半群.称TE(X)为保等价关系变换半群.现讨论对于一个特殊情况,即X是有限的且E只有两个等价类,分别含有r,l(l>r>1)个元.我先讨论同胚群G的秩,然后考虑的TE(X)秩.结果发现,这时TE(X)有一组生成元,含有Crl+7个元素,从而确定了TE(X)的秩不超过Crl+7.  相似文献   

3.
半群S中的元素a是正则元,如果存在b∈S,使aba=a.正则元是半群中重要且特殊的元素,对确定半群的结构起着关键作用.对于任意的非空集合X,策划了半群T(X.θ)上的正则元,明确了正则元本质.其结论为刻划半群S(X.θ)的正则元提供了理论基础.  相似文献   

4.
设T_X是非空集合X上全变换半群,E是X上等价关系,则T_?(X)={f∈T_X:?_x,y∈X,(f(x),f(y))∈E?(x,y)∈E}是T_X的反射等价关系的子半群.取定θ∈T_?(X),在T_?(X)上定义新的运算°为f°g=fθg,其中fθg表示一般意义上映射f、θ、g的复合.关于这个运算°,T_?(X)成为夹心变换半群T_?(X;θ).本文刻画了它的正则元,给出了T_?(X;θ)是正则半群的充要条件.  相似文献   

5.
一个变换半群的同余(英文)   总被引:1,自引:1,他引:0  
设X是一个集合,|X|>3,TX为集合X上的全变换半群.设E为X上的一个等价关系,TE(X)={f∈TX:(x,y)∈E■(f(x),f(y))∈E}为由等价关系E决定的TX的一个子半群.记T2(X)={f∈TE(X):|f(X)|≤2}∪{id},这里id表示X上的恒等映射,则T2(X)是TE(X)的一个子半群.另外还描述了半群T2(X)上的几个同余.  相似文献   

6.
一类有限变换半群的Green关系   总被引:2,自引:0,他引:2  
在[5]中作者考察过一类变换半群,即TE(X){f∈Fx,任意(a,b)∈E,(f(a),f(b))∈E},这里E是集合X上任一等价关系,当X带上以所有E类为基的拓扑时,TE(X)恰是拓扑空间X上的连续自映半群。本文讨论了半群TE(X)上的Green关系,并且当X为有限集,E是单等价关系时,给出了全部Green关系的刻划。  相似文献   

7.
一类变换半群的秩   总被引:1,自引:1,他引:1  
设Tx为集合X上的全变换半群,E是X上一个等价关系.令TE(X)={f∈TX;↓A(x,y)∈E(f,x),f(y))∈E},则TE(X)是Tx的一个子半群.本文讨论对于一个较为特殊的情况,即E只有两个等价类,且每个等价类有n(n≥3)个点.结果发现,这时TE(X)有一组生成元,含有5个元素,从而确定了TE(X)的秩不超过5.  相似文献   

8.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

9.
对于Y上的任意非平凡等价关系E,讨论了由E确定的夹心半群TE(X,Y,θ)的同余格C(TE(X,Y,θ)),证明了当θ是单射时,C(TE(X,Y,θ))可分解为3个不相交的完全子格[C(δ),Cα(δ)],[C(E),Cα(E)]和[C(ω),Cα(ω)].在此基础上考察了TE(X,Y,θ)上的一个同余τ,并证明了当E为单等价关系时,τ是[C(E),Cα(E)]中的唯一原子.  相似文献   

10.
一类部分变换半群的Green关系   总被引:1,自引:0,他引:1  
X为任意集且|X|≥5,E是X上的双等价关系,即E=(A×A)∪(B×B)∪Δ(X)其中A,B是X的真子集且|A|>1,|B|>1,Δ(X)={(x,x):x∈X}.PX表示集合X上的部分变换半群,令PE(X)={f∈PX:(a,b)∈E且a,b∈domf,(f(a),f(b))∈E},那么PE(X)是PX上的一个子半群.刻划了PE(X)的G reen关系.  相似文献   

11.
设X为非空集合,|X|>3,TX是X上的全变换半群.设E是X上的一个等价关系,TE(X)是由等价关系E所决定的TX的子半群,满足(x,y)∈E,(f(x),f(y))∈E.记T2(X)是TE(X)的一个子半群,满足f∈T2(X),|f(X)|≤2.讨论了半群T2(X)上的格林关系和正则元.  相似文献   

12.
设TX是非空集合X上全变换半群,E是X上非平凡的等价关系,R是X/E的横断面,则TE(X,R)={f∈TX:x,y∈X,(x,y)∈E(f(x),f(y))∈E且f(R)R}是TX的子半群.本文赋予半群TE(X,R)自然偏序关系,通过构造映射的方法,刻画它的左相容元,给出充要条件.  相似文献   

13.
设X为任意的非空集合,TX是X上的全变换半群。设E是X上的一个等价关系,TE*!(X)是由等价关系E所决定的TX的子半群,满足(x,y)∈E当且仅当(f(x), f(y))∈E 。将讨论TE*!(X)中的变换在自然偏序关系下的覆盖元以及任意两个变换的上(下)界。  相似文献   

14.
一类保等价关系部分变换半群的Green关系和正则性   总被引:1,自引:0,他引:1  
设X为任意集合且X≥3,PX为集合X上的部分变换半群,对于X上的非平凡等价关系E,令PE(X)={f∈PX:(a,b)∈E,(f(a),f(b))∈E},那么PE(X)是PX的一个子半群.从较特殊的情况出发,考虑E为X上的单等价关系,即E=(A×A)∪Δ(X)其中A是X的真子集且A>1,Δ(X)=(x,x):x∈X.给出了PE(X)的正则元的充分必要条件及PE(X)的正则性,刻划了PE(X)的Green关系及PE(X)的正则元之间的Green关系.  相似文献   

15.
设X和Y是有限非空集合,PO(X,Y)表示从X到Y的所有部分保序映射构成的集合.取定θ∈PO(Y,X),在PO(X,Y)上定义运算,如:αβ=αθβ,则(PO(X,Y),)是一个半群,称为有限部分保序夹心半群,记为PO(X,Y,θ).半群PO(X,Y,θ)的格林关系及其正则元被刻划了.  相似文献   

16.
有限夹心半群T(X,Y;θ)的正则性与Green关系   总被引:1,自引:1,他引:1  
设X,Y是非空集合。记T(X,Y)为X到Y的映射全体构成的集合,θ是Y到X的一个确定的映射,α,β∈T(X,Y),定义运算:αβ=αθβ,这里,αθβ表示一般映射的合成。则T(X,Y)关于运算构成一个半群,称为夹心半群T(X,Y;θ)。当X,Y都为有限集合且|X|>1,|Y|>1时,称夹心半群T(X,Y;θ)为有限夹心半群。讨论了T(X,Y;θ)、T(X;θ)和TX之间的联系,研究了有限夹心半群T(X,Y;θ)的正则性和G reen关系。  相似文献   

17.
设X为非空集合,PX为X上的部分变换半群,设E为X上的一个等价关系,R为商集X/E的横断面(即在每个等价类中取一个元素所组成的集合).对于每个x∈dom f,记rx为R中的元素,满足(x,rx)∈E.定义PE(X,R)={f∈PX:(∨)x,y∈dom f,(x,y)∈E(→)(f(x),f(y))∈E,(∨)x∈dom f(→)rx∈dom f,f(rx)∈R}.则PE(X,R)作成PX的子半群.本文主要讨论PE(X,R)的Green关系.  相似文献   

18.
设集合X_n={1,2,…,n}并赋予自然序,PT_n是集合X_n上所有部分变换构成的半群.设A?X_n非空,令PT_n(A)={α∈PT_n:im α?A}.在半群PT_n(A)上规定运算。:f。g=fθg,则在运算。下,PT_n(A)构成一个新的半群,称为它的变种半群.利用正则元及格林关系的定义,讨论了半群PT_n(A)的变种半群的正则性,给出了它的变种半群是正则半群的充要条件,并刻画了其变种半群中任意元素间的格林关系,所得结果是半群PT_n(A)上相应结果的推广.  相似文献   

19.
设X是一个有限全序集,E是集合X上的等价关系.令PEOPx={α∈Px:(A)x,y∈domα,(x,y)∈E且x≤y(=>)(xα,yα)∈E且xα≤yα},取定θ∈PEOPx,在PEOPx上定义一个运算"o",其中α°β=αθβ,得到一个新的半群称为保E-序部分变换半群的变种半群,记为PEOPx(θ).本文主要刻划...  相似文献   

20.
设X为一非空集合,T(X)为X上的变换半群,E为X上的一个等价关系,给出如下两个集合:Tx0(X)={α∈T(X):x0α=x0},Tx0SE(X)={α∈Tx0(X):x∈X,(x,xα)∈E}。证明了Tx0SE(X)为一正则半群,同时还讨论了Tx0SE(X)上的自然偏序结构及其左右相容性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号