首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A M Pyle  T R Cech 《Nature》1991,350(6319):628-631
Shortened forms of the group I intron from Tetrahymena catalyse sequence-specific cleavage of exogenous oligonucleotide substrates. The association between RNA enzyme (ribozyme) and substrate is mediated by pairing between an internal guide sequence on the ribozyme and a complementary sequence on the substrate. RNA substrates and cleavage products associate with a binding energy greater than that of base-pairing by approximately 4 kcal-mol-1 (at 42 degrees C), whereas DNA associates with an energy around that expected for base-pairing. It has been proposed that the difference in binding affinity is due to specific 2'-OH groups on an RNA substrate forming stabilizing tertiary interactions with the core of the ribozyme, or that the RNA.RNA helix formed upon association of an RNA substrate and the ribozyme might be more stable than an RNA.DNA helix of the same sequence. To differentiate between these two models, chimaeric oligonucleotides containing deoxynucleotide residues at successive positions along the chain were synthesized, and their equilibrium binding constants for association with the ribozyme were measured directly by a new gel electrophoresis technique. We report here that most of the extra binding energy can be accounted for by discrete RNA-ribozyme interactions, the 2'-OH group on the sugar residue three nucleotides from the cleavage site contributing the most interaction energy. Thus, in addition to the well documented binding of RNA to RNA by base-pairing, 2'-OH groups within a duplex can also mediate association between RNA molecules.  相似文献   

2.
RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.  相似文献   

3.
S A Strobel  P B Dervan 《Nature》1991,350(6314):172-174
Physical mapping of chromosomes would be facilitated by methods of breaking large DNA into manageable fragments, or cutting uniquely at genetic markers of interest. Key issues in the design of sequence-specific DNA cleaving reagents are the specificity of binding, the generalizability of the recognition motif, and the cleavage yield. Oligonucleotide-directed triple helix formation is a generalizable motif for specific binding to sequences longer than 12 base pairs within DNA of high complexity. Studies with plasmid DNA show that triple helix formation can limit the operational specificity of restriction enzymes to endonuclease recognition sequences that overlap oligonucleotide-binding sites. Triple helix formation, followed by methylase protection, triple helix-disruption, and restriction endonuclease digestion produces near quantitative cleavage at the single overlapping triple helix-endonuclease site. As a demonstration that this technique may be applicable to the orchestrated cleavage of large genomic DNA, we report the near quantitative single-site enzymatic cleavage of the Saccharomyces cerevisiae genome mediated by triple helix formation. The 340-kilobase yeast chromosome III was cut uniquely at an overlapping homopurine-EcoRI target site 27 base pairs long to produce two expected cleavage products of 110 and 230 kilobases. No cleavage of any other chromosome was detected. The potential generalizability of this technique, which is capable of near quantitative cleavage at a single site in at least 14 megabase pairs of DNA, could enable selected regions of chromosomal DNA to be isolated without extensive screening of genomic libraries.  相似文献   

4.
Bianco PR  Kowalczykowski SC 《Nature》2000,405(6784):368-372
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA. They are a diverse group of proteins that move in a linear fashion along a one-dimensional polymer lattice--DNA--by using a mechanism that couples nucleoside triphosphate hydrolysis to both translocation and double-stranded DNA unwinding to produce separate strands of DNA. The RecBC enzyme is a processive DNA helicase that functions in homologous recombination in Escherichia coli; it unwinds up to 6,250 base pairs per binding event and hydrolyses slightly more than one ATP molecule per base pair unwound. Here we show, by using a series of gapped oligonucleotide substrates, that this enzyme translocates along only one strand of duplex DNA in the 3'-->5' direction. The translocating enzyme will traverse, or 'step' across, single-stranded DNA gaps in defined steps that are 23 (+/-2) nucleotides in length. This step is much larger than the amount of double-stranded DNA that can be unwound using the free energy derived from hydrolysis of one molecule of ATP, implying that translocation and DNA unwinding are separate events. We propose that the RecBC enzyme both translocates and unwinds by a quantized, two-step, inchworm-like mechanism that may have parallels for translocation by other linear motor proteins.  相似文献   

5.
A DNA-fuelled molecular machine made of DNA   总被引:25,自引:0,他引:25  
Yurke B  Turberfield AJ  Mills AP  Simmel FC  Neumann JL 《Nature》2000,406(6796):605-608
Molecular recognition between complementary strands of DNA allows construction on a nanometre length scale. For example, DNA tags may be used to organize the assembly of colloidal particles, and DNA templates can direct the growth of semiconductor nanocrystals and metal wires. As a structural material in its own right, DNA can be used to make ordered static arrays of tiles, linked rings and polyhedra. The construction of active devices is also possible--for example, a nanomechanical switch, whose conformation is changed by inducing a transition in the chirality of the DNA double helix. Melting of chemically modified DNA has been induced by optical absorption, and conformational changes caused by the binding of oligonucleotides or other small groups have been shown to change the enzymatic activity of ribozymes. Here we report the construction of a DNA machine in which the DNA is used not only as a structural material, but also as 'fuel'. The machine, made from three strands of DNA, has the form of a pair of tweezers. It may be closed and opened by addition of auxiliary strands of 'fuel' DNA; each cycle produces a duplex DNA waste product.  相似文献   

6.
D Suck  C Oefner 《Nature》1986,321(6070):620-625
Bovine pancreatic deoxyribonuclease I (DNase I), an endonuclease that degrades double-stranded DNA in a nonspecific but sequence-dependent manner, has been used as a biochemical tool in various reactions, in particular as a probe for the structure of chromatin and for the helical periodicity of DNA on the nucleosome and in solution. Limited digestion by DNase I, termed DNase I 'footprinting', is routinely used to detect protected regions in DNA-protein complexes. Recently, we have solved the three-dimensional structure of this glycoprotein (relative molecular mass 30,400) by X-ray structure analysis at 2.5 A resolution and have subsequently refined it crystallographically at 2.0 A. Based on the refined structure and the binding of Ca2+-thymidine 3',5'-diphosphate (Ca-pTp) at the active site, we propose a mechanism of action and present a model for the interaction of DNase I with double-stranded DNA that involves the binding of an exposed loop region in the minor groove of B-DNA and electrostatic interactions of phosphates from both strands with arginine and lysine residues on either side of this loop. We explain DNase I cleavage patterns in terms of this model and discuss the consequences of the extended DNase I-DNA contact region for the interpretation of DNase I footprinting results.  相似文献   

7.
8.
Ma JB  Yuan YR  Meister G  Pei Y  Tuschl T  Patel DJ 《Nature》2005,434(7033):666-670
RNA interference (RNAi) is a conserved sequence-specific gene regulatory mechanism mediated by the RNA-induced silencing complex (RISC), which is composed of a single-stranded guide RNA and an Argonaute protein. The PIWI domain, a highly conserved motif within Argonaute, has been shown to adopt an RNase H fold critical for the endonuclease cleavage activity of RISC. Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stranded RNA, thereby identifying the binding pocket for guide-strand 5'-end recognition and providing insight into guide-strand-mediated messenger RNA target recognition. The phosphorylated 5' end of the guide RNA is anchored within a highly conserved basic pocket, supplemented by the carboxy-terminal carboxylate and a bound divalent cation. The first nucleotide from the 5' end of the guide RNA is unpaired and stacks over a conserved tyrosine residue, whereas successive nucleotides form a four-base-pair RNA duplex. Mutation of the corresponding amino acids that contact the 5' phosphate in human Ago2 resulted in attenuated mRNA cleavage activity. Our structure of the Piwi-RNA complex, and that determined elsewhere, provide direct support for the 5' region of the guide RNA serving as a nucleation site for pairing with target mRNA and for a fixed distance separating the RISC-mediated mRNA cleavage site from the anchored 5' end of the guide RNA.  相似文献   

9.
Parker JS  Roe SM  Barford D 《Nature》2005,434(7033):663-666
RNA interference and related RNA silencing phenomena use short antisense guide RNA molecules to repress the expression of target genes. Argonaute proteins, containing amino-terminal PAZ (for PIWI/Argonaute/Zwille) domains and carboxy-terminal PIWI domains, are core components of these mechanisms. Here we show the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA. The structure contains a highly conserved metal-binding site that anchors the 5' nucleotide of the guide RNA. The first base pair of the duplex is unwound, separating the 5' nucleotide of the guide from the complementary nucleotide on the target strand, which exits with the 3' overhang through a short channel. The remaining base-paired nucleotides assume an A-form helix, accommodated within a channel in the PIWI domain, which can be extended to place the scissile phosphate of the target strand adjacent to the putative slicer catalytic site. This study provides insights into mechanisms of target mRNA recognition and cleavage by an Argonaute-siRNA guide complex.  相似文献   

10.
Cyclobutane and [6-4]-pyrimidine dimers are major photoproducts of ultraviolet-irradiated DNA. The yield of these photoproducts is dependent on the sequence and structure of the DNA. By analysing the photofootprints of fragments produced by cleavage of the DNA chain near [6-4]-pyrimidine dimers, we show here that a homopurine-homopyrimidine insert (with either d(TC)x or d(C)n) in plasmid pUC19 is, as expected, a good target for UV-induced pyrimidine-dimer formation. But we find that dimerization is virtually completely suppressed when the pyrimidine oligonucleotides d(TC)y or d(C)m are added to DNA carrying d(TC)x- or d(C)n-containing inserts, respectively. This effect is dependent on the type of oligonucleotide used and is site-specific. The protection occurs under acidic conditions that favour the formation of intermolecular triplexes between the homopurine-homopyrimidine inserts and homologous oligopyrimidines. We therefore conclude that triplex formation effectively protects the DNA duplex from UV-induced damage (pyrimidine dimerization). This observation makes the photofootprinting assay a very promising method for studying intermolecular and intramolecular triplexes (H-form DNA) both in vitro and in vivo.  相似文献   

11.
G Garriga  A M Lambowitz  T Inoue  T R Cech 《Nature》1986,322(6074):86-89
Group I introns include many mitochondrial ribosomal RNA and messenger RNA introns and the nuclear rRNA introns of Tetrahymena and Physarum. The splicing of precursor RNAs containing these introns is a two-step reaction. Cleavage at the 5' splice site precedes cleavage at the 3' splice site, the latter cleavage being coupled with exon ligation. Following the first cleavage, the 5' exon must somehow be held in place for ligation. We have now tested the reactivity of two self-splicing group I RNAs, the Tetrahymena pre-rRNA and the intron 1 portion of the Neurospora mitochondrial cytochrome b (cob) pre-mRNA, in the intermolecular exon ligation reaction (splicing in trans) described by Inoue et al. The different sequence specificity of the reactions supports the idea that the nucleotides immediately upstream from the 5' splice site are base-paired to an internal, 5' exon-binding site, in agreement with RNA structure models proposed by Davies and co-workers and others. The internal binding site is proposed to be involved in the formation of a structure that specifies the 5' splice site and, following the first step of splicing, to hold the 5' exon in place for exon ligation.  相似文献   

12.
N L Craig  J W Roberts 《Nature》1980,283(5742):26-30
The recA protein mediates both genetic recombination and several cellular responses to DNA damage, including the induction of temperate bacteriophage. Indication of phage lambda results from proteolytic cleavage of lambda repressor directed by recA protein. We show here that this cleavage reaction requires both polynucleotide and ATP. We suggest that a stoichiometric complex of recA protein and DNA is active both to destroy repressors by proteolytic cleavage and to initiate pairing of this DNA to its homologous sequence in a DNA duplex ('strand invasion').  相似文献   

13.
Quadruplex structure of Oxytricha telomeric DNA oligonucleotides.   总被引:39,自引:0,他引:39  
F W Smith  J Feigon 《Nature》1992,356(6365):164-168
The telomeres of most eukaryotes contain a repeating G-rich sequence with the consensus d(T/A)1-4G1-8, of which 12-16 bases form a 3' single-strand overhang beyond the telomeric duplex. It has been proposed that these G-rich oligonucleotides associate to form four-stranded structures from one, two or four individual strands and that these structures may be relevant in vivo. The proposed structures contain Hoogsteen base-paired G-quartets, precedent for which has been in the literature for many years. Here we use 1H NMR spectroscopy to study the conformations of the DNA oligonucleotides d(G4T4G4) (Oxy-1.5) and d(G4T4G4T4G4T4G4) (Oxy-3.5) which contain the Oxytricha telomere repeat (T4G4). We find that these molecules fold to form a symmetrical bimolecular and an intramolecular quadruplex, respectively. Both structures have four G-quartets formed from nucleotides that are alternately syn and anti along each strand. This arrangement differs from earlier models in which the strands are alternately all syn or all anti. The T4 loops in Oxy-1.5 are on opposite ends of the quadruplex and loop diagonally across the G-quartet, resulting in adjacent strands being alternately parallel and antiparallel.  相似文献   

14.
15.
Stano NM  Jeong YJ  Donmez I  Tummalapalli P  Levin MK  Patel SS 《Nature》2005,435(7040):370-373
Helicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA. The helicase rate of stimulation depends upon the DNA synthesis rate and does not rely on specific interactions between T7 DNA polymerase and the carboxy-terminal residues of T7 helicase. Efficient duplex DNA synthesis is achieved only by the combined action of the helicase and polymerase. The strand displacement DNA synthesis by the DNA polymerase depends on the unwinding activity of the helicase, which provides ssDNA template. The rapid trapping of the ssDNA bases by the DNA synthesis activity of the polymerase in turn drives the helicase to move forward through duplex DNA at speeds similar to those observed along ssDNA.  相似文献   

16.
Novel guanosine requirement for catalysis by the hairpin ribozyme   总被引:14,自引:0,他引:14  
B M Chowrira  A Berzal-Herranz  J M Burke 《Nature》1991,354(6351):320-322
THERE is much interest in the development of 'designer ribozymes' to target destruction of RNAs in vitro and in vivo. Engineering of ribozymes with novel specificities requires detailed knowledge of the ribozyme-substrate interaction, and a rigorous evaluation of sequence specificity. The hairpin ribozyme catalyses an efficient and reversible site-specific cleavage reaction. We have used mutagenesis and in vitro selection strategies to show that RNA cleavage and ligation has an absolute requirement for guanosine immediately 3' to the cleavage-ligation site. This G is not required for efficient substrate binding, rather, its 2-amino group is an essential component of the active site required for catalysis.  相似文献   

17.
DNA计算机     
脱氧核糖核酸(简称DNA)是生物体内的一种具有双螺旋结构的遗传物质,用DNA可以进行运算,即构成的DNA计算机能很快地求解复杂的问题;以DNA编码为信息的载体,DNA计算机中的输入和输出设备都是DNA的,链用一系列二进制的数代表所求问题中的变量,用DNA中特有的寡核苷酸序列表示这些二进制的数,再将DNA利用分子生物和化学组装技术组装到芯片上,利用DNA杂交化学方法,排除各种代表不正确解的寡核苷酸序列,最后通过聚合酶链式反应(PCR)和各种检测技术读出保留在芯片上的DNA序列,读出的DNA序列所代表的二进制数即为所求问题的解,本文将从DNA运算过程入手,介绍DNA计算机的原理和DNA计算机的若干最新研究进展。  相似文献   

18.
Myong S  Rasnik I  Joo C  Lohman TM  Ha T 《Nature》2005,437(7063):1321-1325
Many helicases modulate recombination, an essential process that needs to be tightly controlled. Mutations in some human disease helicases cause increased recombination, genome instability and cancer. To elucidate the potential mode of action of these enzymes, here we developed a single-molecule fluorescence assay that can visualize DNA binding and translocation of Escherichia coli Rep, a superfamily 1 DNA helicase homologous to Saccharomyces cerevisiae Srs2. Individual Rep monomers were observed to move on single-stranded (ss)DNA in the 3' to 5' direction using ATP hydrolysis. Strikingly, on hitting a blockade, such as duplex DNA or streptavidin, the protein abruptly snapped back close to its initial position, followed by further cycles of translocation and snapback. This repetitive shuttling is likely to be caused by a blockade-induced protein conformational change that enhances DNA affinity for the protein's secondary DNA binding site, thereby resulting in a transient DNA loop. Repetitive shuttling was also observed on ssDNA bounded by a stalled replication fork and an Okazaki fragment analogue, and the presence of Rep delayed formation of a filament of recombination protein RecA on ssDNA. Thus, the binding of a single Rep monomer to a stalled replication fork can lead to repetitive shuttling along the single-stranded region, possibly keeping the DNA clear of toxic recombination intermediates.  相似文献   

19.
A robust DNA mechanical device controlled by hybridization topology.   总被引:15,自引:0,他引:15  
Controlled mechanical movement in molecular-scale devices has been realized in a variety of systems-catenanes and rotaxanes, chiroptical molecular switches, molecular ratchets and DNA-by exploiting conformational changes triggered by changes in redox potential or temperature, reversible binding of small molecules or ions, or irradiation. The incorporation of such devices into arrays could in principle lead to complex structural states suitable for nanorobotic applications, provided that individual devices can be addressed separately. But because the triggers commonly used tend to act equally on all the devices that are present, they will need to be localized very tightly. This could be readily achieved with devices that are controlled individually by separate and device-specific reagents. A trigger mechanism that allows such specific control is the reversible binding of DNA strands, thereby 'fuelling' conformational changes in a DNA machine. Here we improve upon the initial prototype system that uses this mechanism but generates by-products, by demonstrating a robust sequence-dependent rotary DNA device operating in a four-step cycle. We show that DNA strands control and fuel our device cycle by inducing the interconversion between two robust topological motifs, paranemic crossover (PX) DNA and its topoisomer JX2 DNA, in which one strand end is rotated relative to the other by 180 degrees. We expect that a wide range of analogous yet distinct rotary devices can be created by changing the control strands and the device sequences to which they bind.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号