首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
本文是研究整函数的增长性.应用无穷级整函数的对数级与对数型的定义,以及参考文献[2]中的一些结果,进一步得到了关于无穷级整函数对数级与对数型的一些重要性制裁.现将主要结果叙述于下:定理1:设整函数f(Z)=sum from n=0 to ∞ a_nZ~n的对数级为ρ1,则有ρ1=(?)定理2:设整函数f(Z)=sum from n=0 to∞(a_nZ~n)的对数级为ρ_1,并且0<ρ_1<+∞,其对数型为σ_1,则有定理3:设整函数f(z)=sum from n=0 to∞( a_nZ~n),存在,并且0<ρ<十∞,则当0<ν<+∞时,ρ必为f(Z)的对数级,进而ν为f(Z)的对数型.定理4:设f(Z)=sum from n=0 to∞(a_nZ~n)为无穷级整函数,则f(Z)与它的导函数f’(z)具有相同的对数级与对数型.  相似文献   

2.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

3.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

4.
一、引言设给定函数f(z)=sum from n=0 to ∞(c_nz~n(|z|<1),其中a_n是复数。我们使用下列符号:  相似文献   

5.
复的幂级数sum from n=0 to ∞(C_n(z-a)~n)在收敛圆k:|z-a|<R(0<R≤+∞)内的和函数f(z)具n=0有一些很好的性质,如:①,f(z)在k内解析;②,f(z)在k内具有任意阶导数,且可逐项求导至任意阶,即:f_(Z)~(m)=sum from n=m to ∞(n(n-1))……(n-m+1)·C_n(z-a)~(n-m),(z∈k,m∈N)等。但其和函数在收敛圆周|z-a|=R(0相似文献   

6.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

7.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

8.
本文研究单位圆盘|z|<1内满足条件f′(z)+λzf″(z)(?)(1+Az)/(1+Bz)(λ≥0,-1≤B相似文献   

9.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

10.
设f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz~n)from n=1 to +∞为定义在单位圆盘U上的调和映照,满足条件sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|,证明当0相似文献   

11.
设μ为正常数。令■这里,当n→∞时,■则勒襄特级数sum from n=0 to ∞a_nP_n(z)=a_0 a_1P_1(z) … a_nP_n(z) …以E_μ为其收歛椭圆。在E_μ内令这个级数的和为f(z),并用f(z)表示从它所产生的完全解析函数。如果f(z)在E_μ上—点z_0处解析,则sum from n=0 to ∞a_nP_n(z)在点z_0处收歛。从此即可推出:如果sum from n=0 to ∞a_nP_n(z)在E_μ上一点z_0处发散,则点z_0必为f(z)的奇点。  相似文献   

12.
证明了如下定理: 设f(z)=sum from n=1 to ∞(1/n)a_nP_m(z)为一整函数,P_n(z)为Legendre多项式,λ为一正数,如果(n+1~λ/n)a_n/a_(n+1)|为n的终归单增函数,则有 (α,f)<{1+0(1)}λ~(-λ-1)Γ(1+λ)e~λv(α,f)μ(α,f);■  相似文献   

13.
设f(z)=z+sum from v=1 to∞(a_vz~v)是单位圆|z|<1内的解析函数,用N记这种函数的全体.MacGregor研究了N中函数f(z)的单叶星象性,得到若干结果.本文推广了这些结果.1.概念与记号设f_p(z)=z+sum from k=1 to∞(a_(kp)+1~z~(kp+1))是|z|<1内的p次对称单叶解析函数,其全体记为S_P(P=1,2,…).特别简记S_1=S.如果f_(z)∈S_p,且有β∈[0,1)使得Re{zf′_p(z)/f_p(z)}>β(|z|相似文献   

14.
若f(z)=z sum from n=2 to ∞(a_nZ~n)在单位圆|z|<1中正则单叶,本文证明:当|a_3|≤2.44时,|a_n|相似文献   

15.
§1.引言设函数 f(z)=z+sum from n=2 to ∞ a_nz~n∈S是单位圆内的单叶解析函数,函数 f_1(z)=sum from n=1 to ∞ a_(2n-1)z~(2n-1),|z|=γ<1,(一)戈鲁净对 f(z)及 f_1(z)有下面准确的估计(1):|f(z)|+|f(-z)|≤γ/((1-γ)~2)+γ/((1+γ)~2) (1)|f′(z)|+|f′(-z)|≤(1+γ)/((1-γ)~3)+(1-γ)/((1+γ)~3) (2)|f_1(z)|≤γ(1+γ~2)/((1-γ~2)~2),|f′_1(z)|≤(1+6γ~n+γ~4)/((1-γ~2)~3),|(zf′_1(z))/(f_1(z))|≤(1+6γ~2+γ~4)/(1-γ~4) (3)本文将证明:设 f(z)=z+sum from n=2 to ∞ c_nz~n 是星形单叶函数,F(z)=z+sum from n=2 to ∞ a_nz~n 是凸形单叶函数,函数 F_1(z)  相似文献   

16.
本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz~(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_m(m=n,n+1,…)的最大公因子d_n→∞(n→∞)时,对在一慢增长的亚纯函数a(z),都有:_s(a(z),f)≤1/2。  相似文献   

17.
1、前言: 设f(z)=z+sum from n=2 to ∞(G_nz~n)是单位园|z|<1内的正则单叶函数,记这种函数之全体为S。Г.М.戈鲁辛证明有准确的估计:其中等号被kocbe函数所达到。 Jenkins.J.A补充(1)式而得到:  相似文献   

18.
对凡满足条件Re{f(z)/z}>0的函数的展开式f(z)=z+(sum from n=2 to ∞)a_nz~n的前n项式S_n(z)=z+a_2z~2+…+a_nz~n,寻找S_n(z)的星形和凸形半径问题。  相似文献   

19.
S.M.Shah和Herb,Silverman得到设f(z)是下级为有限的整函数,满足sum from a≠∞δ(a,f)=1.令M_o(r)=expT(r,f),M_3(r)={1/(2π)integral from n=0 to 2π|f(re~(iθ))|dθ}~(1/3),0相似文献   

20.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号