首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe–22Mn–0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis. The steel showed high susceptibility to hydrogen embrittlement, which led to 62.9% and 74.2% reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen, respectively. The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents. The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure, stacking fault probability, and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques. The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults, and deformation twinning within those grains which have tensile axis orientations close to 111//rolling direction and 112//rolling direction. The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.  相似文献   

2.
The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.  相似文献   

3.
The effect of shot peening (SP) on hydrogen embrittlement of high strength steel was investigated by electrochemical hydrogen charging, slow strain rate tensile tests, and hydrogen permeation tests. Microstructure observation, microhardness, and X-ray diffraction residual stress studies were also conducted on the steel. The results show that the shot peening specimens exhibit a higher resistance to hydrogen embrittlement in comparison with the no shot peening (NSP) specimens under the same hydrogen-charging current density. In addition, SP treatment sharply decreases the apparent hydrogen diffusivity and increases the subsurface hydrogen concentration. These findings are attributed to the changes in microstructure and compressive residual stress in the surface layer by SP. Scanning electron microscope fractographs reveal that the fracture surface of the NSP specimen exhibits the intergranular and quasi-cleavage mixed fracture modes, whereas the SP specimen shows only the quasi-cleavage fractures under the same hydrogen charging conditions, implying that the SP treatment delays the onset of intergranular fracture.  相似文献   

4.
The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstructure mechanism of their deformation and fracture behavior was analyzed. The results show that the deformation and fracture behavior of low-carbon steel depends on the grain size of ferrite, the deformation and fracture behavior of medium-carbon steel depends on the size of ferrite grain and pearlite lump,and the deformation and fracture behavior of high-carbon steel depends on the size of pearlite lump and the pearlitic interlamellar spacing.  相似文献   

5.
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.  相似文献   

6.
Combined with the phase transformations in rolling, the phase configuration, the tensile strength, and the yield strength with different terminal rolling grain sizes in Q235 strip steel have been theoretically calculated using the covalent electron number (nA) of the strongest bond in phase cells and the interface electron density difference (Ap) in alloys. The calculated results agree well with the results of real production. Therefore, the calculation method of terminal rolling tensile and yield strength in the non-quenched-tempered steel containing pearlite is given by the alloying electron structure parameters.  相似文献   

7.
The effect of cold rolling and post-rolling heat treatment on the microstructural and electrochemical properties of the 316L stainless steel was investigated.Two-pass and four-pass cold-rolled stainless steel specimens were heat-treated by annealing at 900℃followed by quenching in water.During the cold rolling,the microstructure of the as-received specimen transformed from austenite to strain-inducedα′-martensite due to significant plastic deformation that also resulted in significant grain elongation(i.e.,~33%and 223%increases in the grain elongation after two and four rolling passes,respectively).The hardness of the heat-treated as-received specimen decreased from HV 190 to 146 due to the recovery and recrystallization of the austenite grain structure.The cyclic polarization scans of the as-rolled and heat-treated specimens were obtained in 0.9wt%NaCl solution.The pitting potential of the four-pass rolled specimen was significantly increased from 322.3 to 930.5 mV after post-rolling heat treatment.The beneficial effect of the heat treatment process was evident from~10-times-lower corrosion current density and two-orders-of-magnitude-lower passive current density of the heat-treated specimens compared with those of the as-rolled specimens.Similarly,appreciably lower corrosion rate(3.302×10?4mm/a)and higher pitting resistance(1115.5 mV)were exhibited by the postrolled heat-treated specimens compared with the as-rolled 316L stainless steel specimens.  相似文献   

8.
Through molecular dynamics(MD)simulation,the dependencies of temperature,grain size and strain rate on the mechanical properties were studied.The simulation results demonstrated that the strain rate from 0.05 to 2 ns~(–1 )affected the Young’s modulus of nickel nanowires slightly,whereas the yield stress increased.The Young’s modulus decreased approximately linearly;however,the yield stress firstly increased and subsequently dropped as the temperature increased.The Young’s modulus and yield stress increased as the mean grain size increased from 2.66 to6.72 nm.Moreover,certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension.Certain phenomena such as the formation of twin structures,which were found in nanowires with larger grain size at higher strain rate and lower temperature,as well as the movement of grain boundaries and dislocation,were detected and discussed in detail.The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size.However,for larger grain size,the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire.  相似文献   

9.
The flow curves of an ultra-high nitrogen austenitic steel containing niobium (Nb) and vanadium (V) were obtained by hot compression deformation at temperatures ranging from 1000℃ to 1200℃ and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 kJ/mol, and a hot deformation equation is proposed. (Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050℃ to 1150℃ and in the strain rate range of 0.01 to 1 s-1.  相似文献   

10.
The effect of cold rolling and post-rolling heat treatment on the microstructural and electrochemical properties of the 316 L stainless steel was investigated. Two-pass and four-pass cold-rolled stainless steel specimens were heat-treated by annealing at 900°C followed by quenching in water. During the cold rolling, the microstructure of the as-received specimen transformed from austenite to strain-induced α′-martensite due to significant plastic deformation that also resulted in significant grain elongation(i.e., ~33% and 223% increases in the grain elongation after two and four rolling passes, respectively). The hardness of the heat-treated as-received specimen decreased from HV 190 to146 due to the recovery and recrystallization of the austenite grain structure. The cyclic polarization scans of the as-rolled and heat-treated specimens were obtained in 0.9 wt% Na Cl solution. The pitting potential of the four-pass rolled specimen was significantly increased from 322.3 to 930.5 m V after post-rolling heat treatment. The beneficial effect of the heat treatment process was evident from ~10-times-lower corrosion current density and two-orders-of-magnitude-lower passive current density of the heat-treated specimens compared with those of the as-rolled specimens. Similarly, appreciably lower corrosion rate(3.302 × 10~(-4) mm/a) and higher pitting resistance(1115.5 m V) were exhibited by the postrolled heat-treated specimens compared with the as-rolled 316 L stainless steel specimens.  相似文献   

11.
薄带连铸流程下取向硅钢粗大λ晶粒(〈100〉//ND,normal direction)的“遗传”会导致磁性能恶化.为解决这一问题,针对取向硅钢的热轧孪生行为开展研究,结果表明:凝固组织粗大的取向硅钢在650℃热轧时可产生大量112〈111〉形变孪晶,这与具有高层错能的硅钢在较高温度下难以孪生变形的传统认知不同.热轧过程中复杂的应力状态降低了变形孪晶的取向依赖性,由于具有更高的储存能,孪晶界/孪晶界及孪晶界/晶界交叉点成为再结晶形核的优先位置,大大提高了常化过程中的再结晶率,受沿孪晶界应变分布及孪晶间距离的限制,沿孪晶界形核的再结晶晶粒通常呈“饼状”,最终形成以细小且取向漫散的再结晶晶粒为主的常化组织,消除了初始凝固组织中有害的粗大λ晶粒.  相似文献   

12.
采用金相显微镜、X射线衍射仪和透射电子显微镜研究了Fe-20Mn-2.6Al-2.6Si TRIP/TWIP钢在不同变形量下的微观组织变化.结果表明:在应变初期,主要是形成层错和位错;随应变的增大,γ奥氏体相逐渐减少,ε马氏体相和α马氏体相增多;在断裂阶段,主要组成相为α马氏体,即Fe-20Mn-2.6Al-2.6Si钢在拉伸变形过程中主要发生γ→ε→α或γ→α相变诱导塑性变形.金相组织表明:该钢变形量达到6.5%时,开始出现许多平直的条纹(通常称为形变孪晶);但高分辨透射电镜研究表明:不同程度变形后的微观组织都难以观察到形变孪晶,而那些金相组织和低倍透射电镜照片上的平直条纹往往是ε马氏体相,这进一步证实该钢的变形机制主要是TRIP效应.  相似文献   

13.
Fe-28Mn-3Si-3Al TWIP钢变形的微观组织特征   总被引:2,自引:0,他引:2  
采用扫描电镜、透射电镜和电子背散射衍射技术对TWIP钢拉伸变形后的组织进行了观察和分析. 研究结果表明,热处理后的TWIP钢中存在60%的退火孪晶,变形后孪晶量减少为32%. 在拉伸过程中,具有退火孪晶的晶粒内部首先发生变形,产生的变形孪晶遗传了退火孪晶的取向. 变形过程中孪晶和位错相互作用、孪晶和孪晶相互作用以及孪晶取向改变引发滑移的综合结果使TWIP钢同时获得高塑性和高强度,因此变形过程中孪生变形是TWIP钢的主要变形机制.  相似文献   

14.
通过大变形异步-同步轧制及随后600 ℃和700 ℃退火处理,成功制备了超细晶高锰TWIP钢,并研究了退火处理对大变形TWIP钢的组织和性能的影响.研究结果表明:经96%异步-同步大变形轧制后,材料组织显著细化,抗拉强度从621 MPa大幅提升至2 050 MPa; 经过600 ℃退火后,大变形轧制TWIP钢的组织基本完成了再结晶,材料的平均晶粒尺寸约为500 nm,抗拉强度1 079 MPa,延伸率达到了29%; 而经过700 ℃退火后,大变形TWIP钢的组织发生了完全再结晶,平均晶粒尺寸约为600 nm,抗拉强度达到了1 101 MPa,延伸率达到了54%.退火后的组织中存在大量的层错、位错胞等亚结构.相对于大变形轧制态和600 ℃退火态,700 ℃退火态的超细晶TWIP钢的优异的综合力学性能,主要源于孪晶诱发塑性变形机制及合金较低的层错能.  相似文献   

15.
18Mn18Cr0.5N steel with an initial grain size of 28–177 μm was processed by 2.5%–20% cold rolling and annealing at 1000℃ for 24 h, and the grain boundary character distribution was examined via electron backscatter diffraction. Low strain (2.5%) favored the formation of low-Σ boundaries. At this strain, the fraction of low-Σ boundaries was insensitive to the initial grain size. However, specimens with fine initial grains showed decreasing grain size after grain boundary engineering processing. The fraction of low-Σ boundaries and the (Σ9 + Σ27)/Σ3 value decreased with increasing strain; furthermore, the specimens with fine initial grain size were sensitive to the strain. Finally, the effects of the initial grain size and strain on the grain boundary engineering were discussed in detail.  相似文献   

16.
本文研究了L1_0型TiAl和TiAl Mn金属间化合物的室温力学特性和变形亚结构。实验结果表明:添加合金元素Mn可以促进TiAl合金中的孪生变形,从而使其室温延性得以明显改善。建立了TiAl有序结构中孪生变形的位错模型,根据该模型,阐述了TiAl合金的孪生过程及其晶体学特征,重点讨论了合金元素Mn对TiAl合金孪生变形影响的机制,指出了超位错可动性增强和层错能降低是促进孪生变形的两个重要因素。  相似文献   

17.
对1Cr18Ni9Ti板材进行球磨处理,利用光学显微镜、X射线衍射和透射电镜研究剪切变形方式下深度方向的组织演变.结果表明,剪切变形可以在1Cr18Ni9Ti中诱发表面纳米化,其过程包括:奥氏体内通过位错的增殖、运动、湮灭和重组形成具有亚微米尺度的、取向差较小的位错胞;位错胞壁不断吸收位错而转变成小角度和大角度晶界,将原始粗晶分割成亚微晶;应变量和应变速率的增加诱发机械孪生,形成纳米量级的板条状马氏体;细化组织重复上述过程使晶粒尺寸减小、取向差增大,最终形成等轴状、取向呈随机分布的纳米晶组织.外力作用方向并未改变纳米化过程,但会影响变形层的厚度.  相似文献   

18.
The influence of different rolling processes on precipitation behaviour, crystallography texture, grain morphology, and their consequent effects on tensile properties for Al–Cu–Li alloy AA2195 was investigated in the present work. The H-T8 samples (hot rolled ?+ ?T8) presented better tensile strength and ductility (with serious strength anisotropy) than the HC-T8 samples (hot rolled ?+ ?cold rolled ?+ ?T8), due to their different microstructures and textures. The higher dislocation density was found in the H-T8 samples, which promoted the nucleation of main strengthening phase T1 in the matrix and suppressed the grain boundary precipitation, resulted in better strength and ductility. The increase of the dynamic recovery (DRV) during hot rolling enhanced the generation of Brass texture, and brought serious strength anisotropy. The cold rolling was performed after the hot-rolling process for the HC-T8 samples which increased deformation energy and resulted in full recrystallization of the deformed microstructure during the following solution treatment. The formation of recrystallized microstructure reduced the dislocation density and the heterogeneous precipitate nucleation positions which limited the strengthening phase precipitation in matrix and accelerated the precipitation along grain boundaries, resulted in fewer T1 precipitates, coarse grain-boundary precipitates (GBPs), and wider precipitate-free zones (PFZs). The localized strain may be concentrated on the grain boundary to induce the dislocation pile-up, breaking of the GBPs, and intergranular fracture during stretching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号