首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419)  相似文献   

2.
Ultrasonic field with a frequency of 20 k Hz is introduced into the solidification process of ternary Ag33Cu42Ge25 eutectic alloy from the sample bottom to its top. The ultrasound stimulates the nucleation of alloy melt and prevents its bulk undercooling. At low ultrasound power of 250 W,the primary ε2phase in the whole alloy sample grows into non-faceted equiaxed grains, which differs to its faceted morphology of long strip under static condition. The pseudobinary(Ag t ε2) eutectic transits from dendrite shape grain composed of rod type eutectic to equiaxed chrysanthemus shape formed by lamellar structure. By contrast, the ultrasound produces no obvious variation in the morphology of ternary(Ag t Ge t ε2) eutectic except a coarsening effect. When ultrasound power rises to 500 W, divorced ternary(Ag t Ge t ε2) eutectic forms at the sample bottom. However, in the upper part, the ultrasonic energy weakens, and it only brings about prominent refining effect to primary ε2phase.The microstructural evolution mechanism is investigated on the cavitation, acoustic streaming and acoustic attenuation.  相似文献   

3.
The metastable liquid phase separation occurs in the ternary Cu50Fe37.5Co12.5 peritectic alloy droplets during free fall. The separated alloy melt rapidly solidifies and evolves core-shell microstructure composed of L1(Cu) and L2(Fe,Co) phases. Based on the determination of the phase transition temperature, the core-shell microstructure evolution, the interfacial energy, the temperature gradient and the Marangoni migration are analyzed. The interfacial energy of the separated liquid phase increases with the decrease of the temperature. The temperature gradient changes from large to small along the radius direction from inside to outside in the alloy droplet. The Marangoni force (F M) acting on the micro-droplet of L2(Fe,Co) phase increases with the increase of the size of the L2(Fe,Co) phase, and decreases with the increase of undercooling. Driven by F M, the micro-droplet of L2(Fe,Co) phase migrates from outside to inside in the alloy droplet, collides and coagulates each other during migration, and then forms different types of core-shell microstructures. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and NPU Youth Scientific and Technological Innovation Foundation (Grant No. W016223)  相似文献   

4.
Rapid solidification mechanism of Ag60Sb34Cu6 ternary alloy in drop tube   总被引:1,自引:0,他引:1  
Ternary eutectic growth involves competitive nu-cleation and growth of three solids from one liquid. Thesolidification behavior of ternary eutectic alloy is morecomplex than that of binary eutectic alloy due to the addi-tion of the third component[1—4]. Up to now, most scientificinvestigations on ternary eutectic alloy focus on the influ-ence of changing the component or adding a fourth even afifth element on the performance of the alloy[5—8]. How-ever, the information on crystal growth char…  相似文献   

5.
FeO的制备及其室温下稳定性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用草酸亚铁在高纯Ar气条件下加热分解制备FeO,借助于XRD图谱探讨保护气氛对FeO制备的影响以及FeO在常温下存放的稳定性。结果表明,Ar气保护流量低于400mL/min时,产物相除FeO相外,还分别含有Fe3O4、Fe相,甚至有Fe2O3相杂质;较佳的Ar气保护流量为400mL/min,此时制备的FeO纯度高,其他杂质较少。新制备的FeO样品在干燥、潮湿和室内自然环境中保存,90d内未发生明显相的变化。  相似文献   

6.
Al-27%Cu-5.3%Si ternary eutectic alloy was melted using a YAG laser and then solidified while being acoustically levitated. A maximum undercooling to 195 K (0.24 TL) was achieved with a cooling rate of 76 K/s. The solidification microstructure was composed of (Al+θ+Si) ternary eutectics and (Al+θ) pseudobinary eutectics. During acoustic levitation, the (Al+θ+Si) ternary eutectics are refined and the (Al+θ) pseudobinary eutectics have morphological diversity. On the surface of the alloys, surface oscillations and acoustic streaming promote the nucleation of the three eutectic phases and expedite the cooling process. This results in the refinement of the ternary eutectic microstructure. During experiments, the reflector decreases with increasing alloy temperature, and the levitation distance always exceeds the resonant distance. Because of the acoustic radiation pressure, the melted alloy was flattened, and deformation increases with increasing sound pressure. The maximum aspect ratio achieved was 6.64, corresponding to a sound pressure of 1.8×104 Pa.  相似文献   

7.
The effect of a small amount of Zr addition on the temperature-dependent stability of Laves phase particles and mechanical properties of Fe-13.5Cr-4.73Al-2.07Mo-(0.34–0.5)Nb-(0.65–0.98)Ta-(0–0.33)Zr (wt. %) ferritic alloys was investigated in the present study. The designed alloy ingots were hot-rolled, aged at 1073 ?K for 24 ?h, and then re-treated at 1273 ?K, 1323 ?K, 1373 ?K, and 1473 ?K for 1 ?h, respectively. It was found that the Zr addition could not only stabilize the Fe2M Laves phase (M ?= ?Mo,Nb,Ta,Zr) to a much higher temperature, but also induce the formation of stable Fe23Zr6 phase. The high-temperature (HT) microstructural stability of the alloys significantly was improved, as evidenced by the fact that a certain amount (0.66–1.19%) of precipitates (Fe2M, Fe23Zr6, and core(Fe23Zr6)-shell(Fe2M)-structured particles) with an appropriate size (~1.0 ?μm) uniformly distributed in the ferritic matrix even after being re-treated at 1473 ?K. Particularly, the formation of core-shell-structured particles at HTs was studied from the viewpoint of both solid solubility and diffusion coefficient of M in the matrix. All these aged alloys exhibited prominent mechanical properties at both room and elevated temperatures, showing high yield strength with σYS ?= ?490–560 ?MPa at room-temperature and σYS ?= ?80–85 ?MPa at 1073 ?K. The strengthening effect was further discussed in light of various strengthening mechanisms, and the calculated strength are in good agreement with the experimental results.  相似文献   

8.
A general strategy has been developed here to supramolecular self-assembly of nickel (Ⅱ)-substituted α-Keggin-type polyoxometalate and polyaniline coated Fe2O3 hollow nanospindle (Fe2O3 hollow nanospindle@PANI/α-SiW11Ni composites) via electrostatic attraction and hydrothermal method. Fe3+ was first hydrolyzed and polymerized into Fe2O3, then dissolved into [Fe(H2PO4)x]3?x, resulting in hollow structure. The polyoxometalate existed in polyaniline as a proton-doped counter-ion form, rather than as a separate crystalline state. The protons and anions entered the PANI main chain and combined with N atoms of amines and imines on the PANI chain ((-NH?+ ?= ?)/α-[SiW11Ni(H2O)O39]6-) to form poles and bipolar delocalization into π bonds of the whole polyaniline molecular chain, which leaded to conductance and polarization. The Fe2O3 hollow nanospindle@PANI/α-SiW11Ni composites were proven to be excellent microwave absorber in terms of reflection loss (RL) and bandwidth. The maximum RL value was up to ?53.6 ?dB at 3.5 ?mm and 6.9 ?GHz. The broadest absorption bandwidth exceeding ?10 dB was 6.3 ?GHz at a thickness of only 1.9 ?mm. Moreover, the ternary composites presented obvious multi-band absorption with the matching thickness range of 1.5–5 ?mm. The absorption peaks bandwidth reached as wide as 14.3 ?GHz, which included all C-Ku bands. The hollow and core-shell structures could provide non-uniform interface for the induced polarization loss and space for the reflecting and scattering of microwave. The carrier, pair-ion carrier and hydrogen bond network could lead to conduction loss. The magnetic losses were caused by eddy current effect and natural resonance. This work can lay a theoretical foundation for the design and performance regulation of new absorbing materials.  相似文献   

9.
Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 T L) is obtained in experiment. Theoretic analysis indicated that because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is δT 0 = 474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.  相似文献   

10.
The modification effects of alloying element Sb and heat treatment on Al-15.5wt%Mg2Si alloy were investigated by Olympus microscopy (OM), scanning electron microscopy and energy disperse spectroscopy (SEM-EDS), and X-ray diffraction (XRD). It is found that Sb plays a significant role in shaping primary Mg2Si phase and eutectic Mg2Si phase in Al-15.5wt%Mg2Si alloy. The Sb addition of about 1.0wt% makes the resultant alloy show the finest primary Mg2Si phase and the eutectic Mg2Si phase with well distribution. But further increasing the Sb content decreases the amount of primary Mg2Si phase, and some segregated phases appear at regions between the grains. In addition, heat treatment can modify the microstructural feature of Sb-modified Al-15.5wt%Mg2Si alloy in terms of obviously shortening the nodulizing time of primary Mg2Si phase and eutectic Mg2Si phase.  相似文献   

11.
(Al65Cul20Fe15)100-x Snx (x=0, 12, 20, 30) and Al57Si10Cu18Fe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the produced quasicrystalline bulks were investigated. It was found that the main phases in the Al65Cul20Fe15 sample were crystalline λ-Al13Fe4 and icosahedral quasicrystal together with a small volume fraction of θ-Al2Cu phase. The volume fraction of icosahedral phase decreased as the Sn content in the (Al65Cul20Fe15)100-x Snx samples increased owing to the formation of β-CuSn phase. The increase of Sn content improved the brittleness of the quasicrystal samples. The morphology of the solidification microstructure in the Al57Si10Cu18Fe15 sample changed from elongated shape to spherical shape due to the addition of Si. The nanohardness of the laser multilayer cladded quasicrystal samples was equal to that of the as-cast sample prepared by vacuum quenching. In terms of hardness, the laser cladded Al57Si10Cu18Fe15 quasicrystalline alloy has the highest value among all the investigated samples.  相似文献   

12.
Rapid eutectic growth during free fall   总被引:3,自引:0,他引:3  
Rapid eutectic growth of Sb-24%Cu alloy is realized in the drop tube during the free fall under the containerless condition. Based on the analysis of crystal nucleation and eutectic growth in the free fall condition, it is indicated that, with the increase of undercooling, microstructural transition of Sb-24%Cu eutectic alloy proceeds from lamellar to anomalous eutectic structure. Undercoolings of 0 –154 K have been obtained in experiment. The maximum undercooling exceeds to 0.19Te. Calculated results exhibit that Cu2Sb compound is the primary nucleation phase, and that the primary Sb dendrite will grow more rapidly than the eutectic structure when undercooling is larger than 40 K. The eutectic coupled zone around Sb-24%Cu eutectic alloy leads strongly to the Cu-rich side and covers a composition range from 23.0% to 32.7%Sb.  相似文献   

13.
Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.  相似文献   

14.
The bulk metallic glassy (BMG) rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) and [(FexCo1-x)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) were prepared by copper mold casting. The structure, thermal stability, and magnetic properties of the samples were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and vibrating sample magnetometer (VSM). Adding 1at% to 6at% of yttrium, the bulk glassy alloy rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx(x=0-6) with the diameter of 3 mm were not formed, and the sample with 4at% of yttrium showed less crystalline phase than others. When the Fe/Co atomic ratio was between 5:5 and 7:3, the bulk glassy alloy rods of [(Fe1-xCox)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) with the diameter of 2 mm were fabricated. In the (Fe, Co)-B-Si-Nb-Y BMGs, when the Fe content increased, the thermal stability, the supercooled liquid region, and the glass-forming ability (GFA) decreased, but the saturation magnetization (Ms) increased.  相似文献   

15.
The rapid solidification of undercooled liquid Ni_(45)Fe_(40)Ti_(15)alloy was realized by glass fluxing technique.The microstructure of this alloy consists of primaryγ-(Fe,Ni)phase and a small amount of interdendritic pseudobinary eutectic.The primaryγ-(Fe,Ni)phase transferred from coarse dendrite to fragmented dendrite and the lamellar eutectic became fractured with the increase of undercooling.The growth velocity ofγ-(Fe,Ni)dendrite increased following a power relation with the rise of undercooling.The addition of solute Ti suppressed the rapid growth ofγ-(Fe,Ni)dendrite,as compared with the calculation results of Fe-Ni alloy based on LKT model.The microhardness values of the alloy and the primaryγ-(Fe,Ni)phase increased by 1.5 times owing to the microstructural refinement caused by the rapid dendrite growth.The difference was enlarged as undercooling increases,resulting from the enhanced hardening effects on the alloy from the increased grain boundaries and the second phase.  相似文献   

16.
Effects of Al addition to a Mg–Sn–Ca ternary alloy on its microstructure and tensile properties after extrusion were studied via extrusion of Mg-1.0Sn-0.5Ca-xAl (x ​= ​0, 0.8, 2.4 ​wt%) sheets and analysis of the extruded materials. The results showed that Al addition not only refined the grain size (from 9.8 ​± ​0.7 ​μm to 8.3 ​± ​0.4 ​μm and 7.6 ​± ​0.5 ​μm) but also accelerated the generation of more second phase (from 0.98 to 1.72 and 4.32%). Except for the CaMgSn and Mg2Ca in Mg-1.0Sn-0.5Ca alloy, new phase (Mg, Al)2Ca appeared after Al addition. The addition of Al into Mg–Sn–Ca alloy induced the textural variation from an initially ED-split double-peaked texture to a weakened texture, i.e., divergent elliptical texture, due to the effect of particle stimulated nucleation. This eventually contributed to the improvement of mechanical anisotropy as well as the higher Hc value and n-value. For the strain hardening behavior when tension along the TD, the prolonged stage Ⅱ of Al-modified alloys was closely connected with the additional TD textural components, accelerating the activation of more basal slip. The decreased θⅢ0 in stage Ⅲ of Al-modified alloys is beneficial to the grain refinement and the emergence of more second phase.  相似文献   

17.
High undercooling (about 392 K) was achieved in the bulk eutectic Ni70.2Si29.8 alloy melt through glass fluxing combined with cyclic superheating. It is found that the metastable phases Ni3Si2 and NiSi are obtained through slow post-solidification when undercooling exceeds 240 K. The metastable phases are confirmed by using the method of X-ray diffraction and differential scanning calorimetry (DSC). Based on the principle of the free energy minimum and the transient nucleation theory, the phase selection of melt is investigated with regard to the metastable phases formation in the bulk undercooled eutectic Ni70.2Si29.8 melts. The formation of metastable phases from undercooled Ni70.2Si29.8 melts is ascribed to competitive nucleation with the undercooling, i.e. high undercooling facilitates the preferential nucleation of metastable phases.  相似文献   

18.
采用单辊快淬法制备Fe40Co40Zr7V2B9Ta2非晶合金薄带,并对该合金在不同温度下进行热处理.利用差热分析(DTA)、X射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)测量合金的热性能、微观结构及磁性能.结果表明:Fe40Co40Zr7V2B9Ta2合金的初始晶化产物为α-FeCo相,高温时析出ZrCo3B2,Co23Zr6和ZrB2相;薄带横断面的形貌在快淬态和300℃退火后,合金的自由面呈网状结构,贴辊面呈枝状结构;高于550℃退火,横断面呈颗粒状;550℃退火后合金的矫顽力(Hc)最小,高于550℃退火,Hc随退火温度的升高而增大.  相似文献   

19.
Relationships between the coercivity of hydrogenation disproportionation desorption recombination (HDDR) Nd12.5Fe81.5−x Co6B x bonded magnets and boron content were investigated. Nd2Fe17 phase with planar magnetic anisotropy is present in the microstructure when x= 4at%–5.88at%, which does not reduce the coercivity of the bonded magnets. High-resolution transmission electron microscopy (TEM) images show that Nd2Fe17 phase exists in the form of nanocrystals in the Nd2Fe14B matrix. There is an exchange-coupling interaction between the two phases so that the coercivity of HDDR Nd12.5Fe81.5−x Co6B x bonded magnets is hardly reduced with a decrease in boron content.  相似文献   

20.
The effect of cooling rate on the magnetic properties of the Fe53Nd37Al10 alloy prepared by different methods, i.e., suction casting and melt spinning at different rates, was investigated. The Fe53Nd37Al10 ribbon at the wheel speed of 5 m·s?1 exhibits the highest coercivity in the samples. Two hard magnetic phases are detected from the hysteresis loops of the 5 m·s?1 ribbon at all temperatures below room temperature. Their appearance is associated with different exchange coupling interactions, which are between the two kinds of hard magnetic phases or between the hard magnetic phase and the soft magnetic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号