首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
煤气化半焦的孔隙结构   总被引:5,自引:0,他引:5  
用氮气等温吸附(77K)方法测量了原煤及其加压、常压部分气化后半焦的BET比表面积,并通过BJH法计算了孔比表面积、孔容积、孔径和孔分布.结果表明,原煤在转化为半焦的过程中,孔隙结构变得发达,比表面积、孔比表面积和孔容积明显增大.实验发现半焦的孔比表面积和孔容积分布曲线存在2个明显的峰值,第1个尖峰对应的孔径稍小于2nm,说明微孔的比表面积大大增加;第2个尖峰对应的孔径在3.8nm左右,说明中孔的比表面积增加很快以至于出现了中孔的扩展.加压气化后的半焦孔隙结构更加发达,加压气化比常压气化更能促进半焦孔隙的生成和发展.  相似文献   

2.
采用活性炭纤维处理硝基苯废水,通过静态与动态吸附实验,测定了表观平衡吸附量、动态穿透曲线.研究表明该材料处理硝基苯废水吸附容量大,吸附速度快.研究了高温再生后活性炭纤维的表面纤维结构、比表面积和孔径分布的变化,发现活性炭纤维在高温条件下炭微晶结构的重新蚀刻可能使比表面积有一定程度的增大.  相似文献   

3.
高温热处理后岩石的物理力学性质的变化与其内部孔隙结构的改变有关.以高温水冷处理后的两种花岗岩为研究对象,进行了气体渗透试验,研究了其渗透性随温度的演化规律及微观孔隙结构的变化,并利用比表面积及孔径分析测试从微观层面分析了高温水冷处理后花岗岩的损伤演化和裂隙发育机理,为宏观物理性质改变提供了理论依据.结果表明,两种不同的花岗岩在受到高温水冷后表现出相同的规律,随着温度的升高,岩石内部逐渐产生温度裂隙,比表面积增大、总孔体积增大.利用比表面积及孔径分析得到了岩石内部纳米级孔隙的分布情况,发现在温度的作用下岩石内部的介孔受温度的影响最大.可见,在高温热处理后花岗岩内部的温度裂隙是影响岩石物理性质的主要因素之一,同时利用比表面积及孔径分析测试可以得到花岗岩内部的纳米级孔隙分布情况,为花岗岩的微观孔隙结构研究提供了技术支持.  相似文献   

4.
为研究沁水盆地中高煤级煤的孔隙结构特征,采用低温液氮吸附实验测定了不同煤样比表面积及孔径分布数据,依据吸附-解吸曲线和分形维数对煤岩孔隙系统进行分类.结果表明:煤层微小孔较发育,具有比表面积适中(0.418~0.902 m2/g)、平均孔径小(14.6~21.0nm)、孔容小(0.001 86~0.004 53 cm3...  相似文献   

5.
活性炭纤维在硝基苯水溶液中的吸附和再生   总被引:13,自引:0,他引:13  
采用活性炭纤维处理硝基苯废水,通过静态与动态吸附实验,测定了表观平衡吸附量,动态穿透曲线,研究表明该材料处理硝基苯废水吸附容量大,吸附速度快。研究了高温再生后活性炭纤维的表面纤维结构、比表面积和孔径分布的变化,发现活性炭纤维在高温条件下碳微晶结构的重新蚀刻可能使比表面积有一定程度的增大。  相似文献   

6.
页岩原始储层普遍具有一定的含水饱和度,水分的赋存方式很大程度上影响页岩孔径分布特征、吸附能力和产气机制。选用页岩常见黏土矿物蒙脱石、高岭石和伊利石,开展不同湿度环境下的水蒸气吸附试验和低温氮气吸附-脱附试验,研究水分在黏土矿物上的吸附行为,揭示纳米孔隙中水的赋存方式和分布特征,分析含水饱和度对孔隙分布的影响。结果表明:GAB模型能够很好地描述黏土矿物水蒸气吸附曲线,随着湿度的增加,水蒸气的吸附机制存在单层-多层-凝聚的转变;黏土矿物中水分的赋存特征随孔隙尺度而变化,并进一步对孔隙分布产生影响,以蒙脱石为例,当含水饱和度接近50%时,水分以吸附水(束缚水膜)形式存在于大孔隙中,以凝聚水的形式存在于小于5 nm的孔隙中并导致该尺度孔隙从孔径分布曲线上消失,同时造成微小孔隙(孔径小于10 nm)贡献的比表面积下降幅度超过80%,而干燥情况下明显夸大了微小孔隙对页岩气的吸附及流动的作用。  相似文献   

7.
针对混煤孔隙分布规律及其瓦斯吸附问题,运用WY-98B瓦斯吸附常数测定仪及ASAP 2020型比表面积及孔隙分析仪,对所选择的典型高瓦斯煤矿的原生结构煤及构造煤制作的混合煤样开展吸附特性测试及孔隙分布测试实验.结果表明:构造煤中的孔隙比表面积较原生结构煤体中的孔隙比表面积增大了82.29%,其中孔隙比表面积随构造煤质量变化呈先增高后降低的变化趋势,并且在构造煤与原生结构煤质量相等的条件下达到最大,同时受混合煤样中构造煤存在的影响导致混合煤样等温吸附量及Langmuir吸附常数的变化随构造煤质量的变化呈现开口向下的二次曲线的变化规律,Langmuir吸附常数随构造煤质量的变化呈现出开口向上的二次曲线的变化规律.实验结果为进一步研究不同条件下煤体的吸附特性提供了理论基础.  相似文献   

8.
为进一步分析中低阶煤孔隙结构特征,选取新疆矿区4个典型煤样,通过低温氮吸附法和压汞法测试了煤样的孔隙参数,得到2种测试方法下孔隙比表面积及孔隙体积分布,提出2种测试方法的全孔径段孔隙联孔原则:首先在不超过各自测试范围的前提下,测试微孔孔隙特征以氮吸附法为主,中孔及大孔孔隙特征主要以压汞法为主,联孔位置在过渡孔段; 2种方法在同一孔隙直径处比表面积增量或孔隙体积增量差值最小处即为联孔段。分析了实验煤样全孔径段的孔隙特征,研究结果表明:采用氮吸附法和压汞法对煤样全孔径段孔隙结构分析的联孔位置,对于低阶煤为50~60 nm,中阶煤为85~90 nm,均位于过渡孔段;全孔径段孔隙比表面积占比,低阶煤以微孔为主,中阶煤受微孔和过渡孔共同作用;中低阶煤的全孔径段孔隙体积占比均以中大孔为主。  相似文献   

9.
铝用石墨质阴极不同焙烧温度下孔隙结构演化   总被引:1,自引:0,他引:1  
采用图像分析方法研究铝用石墨质阴极在不同焙烧温度下孔隙结构特征及其演变,考察孔隙率、孔径分布、形状因子、视孔隙比表面积、连通性等参数的变化规律和孔隙复杂度的分形特征.结果表明:随着焙烧温度增加,孔隙率逐渐增大,而视孔隙比表面积、形状因子和连通性呈先减小后增大趋势;石墨质阴极试样不同温度下焙烧生成孔隙均符合分形规律,借助图像分析孔隙结构参数和分形维数可界定不同典型焙烧温度下阴极孔隙结构的演变特征,并据此提出相应的孔隙特征演化模式.  相似文献   

10.
为研究花岗岩内部结构对其物理力学性质的影响,利用氮吸附原理的比表面积及孔径分析仪测得两种花岗岩的比表面积和孔径分布情况,对比分析了两种花岗岩的密度、孔隙率等物理性质及单轴压缩强度,发现由比表面积和孔径表征的岩石孔隙结构更能合理的解释其宏观力学行为。试验结果表明:比表面积较大的岩样强度较低。比表面积较大的岩样加剧了岩样在加载过程中微裂隙的发育,使试样的力学性能降低;孔体积较大的岩样的强度较低。岩样内部孔隙的存在加剧了内部微裂隙的发育。随着轴向压力的不断加载,这些孔隙被压缩,有的成为了微裂隙发育的通道、有的成为新裂隙产生的起源。这些微裂隙不断延伸、扩张、贯通最终使得试样在压力的作用下破坏;利用排水法测得的孔隙率不能完整的反映岩样内部孔隙的发育状态,而通过氮吸附静态容量法测得的孔体积能够较为完整的反映岩样中孔隙的发育状态。比表面积及孔径分析测试更为准确地得到岩石内部的孔隙结构,测试结果对花岗岩的宏观力学行为做出了合理解释。  相似文献   

11.
为研究新疆阜康矿区主采煤层吸附孔孔隙结构特征,选取该矿区四个典型煤样,基于低温氮吸附实验绘制了煤样的吸附解吸等温线,得到煤的孔隙直径,采用BET模型和BJH模型计算了孔隙比表面积和体积等参数,分析了煤样孔隙比表面积及体积分布规律。结果表明:新疆阜康矿区煤的吸附解吸等温线回滞环很小,吸附孔以一段开口的均匀圆筒形孔为主。煤样吸附孔发育程度差别明显,导致各煤层对瓦斯吸附储存能力有所不同。各煤样孔径分布较为均衡,比表面积以过渡孔占比最大,其次为微孔及中孔;过渡孔和中孔的孔隙体积占比较大,微孔较小。煤样孔隙体积分布规律基本一致,比表面积在过渡孔和中孔范围内分布规律相同,微孔范围内分布差异较大。  相似文献   

12.
为了研究和分析石墨纤维表面与孔隙的结构和分形性质,采用场发射扫描电子显微镜、电感耦合等离子体发射光谱仪、全自动物理吸附分析仪对其进行测试与表征.研究结果表明:石墨纤维以圆柱状存在,直径约为12~18 μm,表面较光滑,缺陷较少,有利于气体吸附;石墨纤维碳的质量分数约为95.86 %,还含有少量的N、H、O、S和微量的Ca、Fe、Mg、Si、Al等元素,生产过程中留下的孔道不多;石墨纤维的比表面积较大,其微孔体积占总孔体积的97.98 %,平均孔径在微孔区域,且孔径分布较窄,包含大量0.84 nm左右和少量1.21 nm左右的微孔,较丰富的微孔结构使其具有良好的吸附性能;石墨纤维的表面与孔隙具有较好的分形特性,分形维数分别为2.11和2.99,是一种有工业前景的吸附材料.  相似文献   

13.
采用超细水泥制备了新型超高性能混凝土,试验研究了材料在不同养护条件下的抗压性能,并采用压汞法分析了其砂浆体的孔结构.试验结果表明,高温养护下材料的抗压强度比常温养护明显提高;SC-RPC砂浆体在孔径小于50 nm区间内,孔容积越小,对应的SC-RPC立方体试块抗压强度越高;孔体积测试结果偏离实际情况可能由样品制备时冲击力下产生的裂缝导致;高温养护的SC-RPC砂浆体试样的总孔比表面积明显低于常温养护的试样.  相似文献   

14.
以正硅酸乙酯、聚乙二醇和乙醇等为主要原料,采用溶胶-凝胶法制备了固定化酶用的块状多孔SiO2,着重研究了不同热处理温度下材料的红外光谱、孔径分布和水热稳定性.结果表明:600℃热处理后可有效去除残余有机物,形成无定形硅氧网络结构,并得到细孔比表面积为392m2/g、孔容积为0.93 cm3/g、平均孔径为17 nm的圆柱状多孔SiO2;但经800℃以上热处理后多孔材料的体积密度显著增加、开口气孔率和比表面积急剧减小.600℃热处理的多孔材料在80℃热水中浸泡72 h后,氧化硅溶出率小于2%,细孔比表面积减少小于7%,显示出较好的水热稳定性.  相似文献   

15.
以辽河拗陷东部凸起海陆过渡相石炭系太原组为例,观察、描述太原组岩芯并系统采集佟2905井样品及辽宁省盘锦市小市泉山煤矿样品。通过XRD衍射、高压压汞、低温液氮吸附、场发射扫描电镜等实验手段,全面刻画了海陆过渡相页岩孔隙发育形态和孔隙结构特征。压汞实验结果显示,页岩孔径呈双峰分布,双峰分布在10 100 nm与10 000 100 000 nm,其中孔径小于100 nm孔占主体。低温液氮吸附实验弥补了压汞实验在表征页岩小孔隙上的不足,对100 nm以下的孔隙进行了更为精细的划分,实验结果表明,中孔(10 50 nm)提供了主要的孔体积,占总孔体积的33.48% 43.96%。比表面积的分布与孔径大小呈负相关,极小孔(<2 nm)和小孔(2 10 nm)为比表面积的主要贡献者,提供的比表面积占整个比表面积的82.92% 91.58%,均值为87.36%。单因素分析结果表明,页岩的比表面积主要受控于黏土含量,其相关系数为0.901,有机质影响不明显。孔隙以四面开放的平行板状孔和狭缝状孔为主,这种开放纳米孔可提高页岩气解吸效率和储层渗透率,提高页岩气产量。  相似文献   

16.
采用比表面积及孔径分析技术,测定了浸渍法制备的TiO2/竹炭复合体光催化材料的氮吸附等温线,进而运用BET理论计算了其比表面积、总孔容积和平均孔径分别为359.81 m2/g、0317 2 cm3/g和3.526 nm。同时,依据BJH模型分析了其中孔的孔隙结构参数和孔径分布。结果表明:经过纳米TiO2改性的竹炭不仅保留了竹炭固有的孔隙结构,而且其比表面积、孔容积、孔径都有所增加。经纳米TiO2改性制备的光催化材料的中孔孔容积比竹炭提高了65.86 %。  相似文献   

17.
以正硅酸乙酯(TEOS)为硅前驱体,乙酰胺(CH3CONH2)为助溶剂,十六烷基氯化吡啶(C16PyC l)为结构导向剂,在酸性溶液中合成六方形貌的介孔氧化硅纤维,经小角X射线衍射(SXRD)、扫描电子显微镜(SEM)和低温N2吸附-脱附技术等表征。结果表明:合成的样品为六角状外形的氧化硅纤维,直径约4~7μm,长度约几十微米。六角状纤维的孔道具有与MCM-41类似的六方结构;煅烧后样品的吸附数据显示出吸附-脱附等温线为典型的IV型,吸附-脱附滞后环为H2型,孔道的孔径分布较宽;BJH最可几孔径为2.96 nm和3.50 nm,表明样品具有特殊的双孔道结构;计算的BET表面积为1 060 m2.g-1。  相似文献   

18.
 
为了研究和分析石墨纤维表面与孔隙的结构和分形性质,采用场发射扫描电子显微镜、电感耦合等离子体发射光谱仪、全自动物理吸附分析仪对其进行测试与表征.研究结果表明:石墨纤维以圆柱状存在,直径约为12~18μm,表面较光滑,缺陷较少,有利于气体吸附;石墨纤维碳的质量分数约为95.86%,还含有少量的N、H、O、S和微量的Ca、Fe、Mg、Si、Al等元素,生产过程中留下的孔道不多;石墨纤维的比表面积较大,其微孔体积占总孔体积的97.98%,平均孔径在微孔区域,且孔径分布较窄,包含大量0.84nm左右和少量1.21nm左右的微孔,较丰富的微孔结构使其具有良好的吸附性能;石墨纤维的表面与孔隙具有较好的分形特性,分形维数分别为2.11和2.99,是一种有工业前景的吸附材料.  相似文献   

19.
通过压汞法测量研究了不同CaO含量、不同造球时间的生球以及不同反应温度、不同CO2分压条件下固结生成的碳酸化球团的孔隙结构特征.结果表明:随着CaO含量增加和造球时间延长,生球的平均孔径、显孔隙度、临界孔径和最可几孔径都相应有所降低,生球凝胶孔含量随CaO含量增加而升高,孔隙比表面积增大,利于反应进行的10~300nm孔隙数量增多.优化反应温度、提高CO2分压,有利于促进球团CaCO3微晶大量生成,细化孔径,形成连接桥,冷固结强度显著提高.  相似文献   

20.
磷酸活化汉麻布活性炭纤维的孔结构   总被引:3,自引:0,他引:3  
以汉麻布为原料,采用磷酸活化法制备了汉麻布活性炭纤维,并利用低温氮气吸附和密度泛函理论(DFT)对样品的孔结构进行了分析。结果表明,随着活化温度的升高,磷酸活化的汉麻布活性炭纤维的BET比表面积和总孔容都呈现先增大后减小的变化趋势。不同方法计算得到的样品比表面积值呈相同的变化规律。样品的孔分布集中在2 nm以下的微孔范围内,既有极微孔又有超微孔,只有少量中孔,基本没有大孔。所有样品的孔径在微孔范围内都呈现多峰分布,孔径≤1 nm和1~2 nm的范围内分别都出现了2个峰值孔径。微孔孔容基本上随活化温度的升高而增加,而中孔孔容的数值则整体上变化不大。样品表面能量分布较宽,并呈现有多个不连续峰值的多峰分布,宽的孔径分布导致宽的表面能量分布和较多的能量峰值,并使吸附位的种类也随之增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号