首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequence of the rat skeletal muscle actin gene   总被引:56,自引:0,他引:56  
R Zakut  M Shani  D Givol  S Neuman  D Yaffe  U Nudel 《Nature》1982,298(5877):857-859
The actins constitute a family of highly conserved proteins found in all eukaryotic cells. Their conservation through a very wide range of taxonomic groups and the existence of tissue-specific isoforms make the actin genes very interesting for the study of the evolution of genes and their controlling elements. On the basis of amino acid sequence data, at least six different mammalian actins have been identified (skeletal muscle, cardiac muscle, two smooth muscle actins and the cytoplasmic beta- and gamma-actins). Rat spleen DNA digested by the EcoRI restriction enzyme contains at least 12 different fragments with actin-like sequences but only one which hybridized, in very stringent conditions, with the skeletal muscle cloned cDNA probe. Here we describe the sequence of the actin gene in that fragment. The nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. There are five small introns in the coding region and a large intron in the 5'-untranslated region. Comparison of the structure of the rat skeletal muscle actin gene with available data on actin genes from other organisms shows that while the sequenced actin genes from Drosophila and yeast have introns at different locations, introns located at codons specifying amino acids 41, 121, 204 and 267 have been preserved at least from the echinoderm to the vertebrates. A similar analysis has been done by Davidson. An intron at codon 150 is common to a plant actin gene and the skeletal muscle acting gene.  相似文献   

2.
E Schwob  R P Martin 《Nature》1992,355(6356):179-182
Actin, a major cytoskeletal component of all eukaryotic cells, is one of the most highly conserved proteins. It is involved in various cellular processes such as motility, cytoplasmic streaming, chromosome segregation and cytokinesis. The actin from the yeast Saccharomyces cerevisiae, encoded by the essential ACT1 gene, is 89% identical to mouse cytoplasmic actin and is involved in the organization and polarized growth of the cell surface. We report here the characterization of ACT2, a previously undescribed yeast split gene encoding a putative protein (391 amino acids, relative molecular mass (Mr) 44,073) that is 47% identical to yeast actin. The requirement of the ACT2 gene for vegetative growth of yeast cells and the existence of related genes in other eukaryotes indicate an important and conserved role for these actin-like proteins. Superimposition of the Act2 polypeptide onto the three-dimensional structure of known actins reveals that most of the divergence occurred in loops involved in actin polymerization, DNase I and myosin binding, leaving the core domain mainly unaffected. To our knowledge, the Act2 protein from S. cerevisiae is the first highly divergent actin molecule described. Structural and physiological data suggest that the Act2 protein might have an important role in cytoskeletal reorganization during the cell cycle.  相似文献   

3.
对水稻、野生稻和茭白Hsp70基因第一个内含子进行PCR分析及部分序列测定,分析结果表明植物Hsp70基因内含子编码多个snoRNA的基因组织具有一定的保守性和分布范围,揭示了植物内含子编码的snoRNA在进化过程中具有比脊椎动物和酵母更加丰富的多样性和移动性.  相似文献   

4.
E M Mota  R A Collins 《Nature》1988,332(6165):654-656
The discovery of intervening sequences (introns) in eukaryotic genes has raised questions about the origin and evolution of these sequences. Hypotheses concerning these topics usually consider the intron as a unit that could be lost or gained over time, or as a region within which recombination can occur to facilitate the production of new proteins by exon shuffling. Additional complexities are observed in introns of mitochondrial and chloroplast genes which contain secondary structures required for messenger RNA splicing and open-reading frames encoding proteins. Here we describe differences in the organization of protein-coding sequences in the intron of the mitochondrial ND1 gene in two closely related species of Neurospora. These differences show that intron sequences involved in secondary structure formation and in protein coding can evolve as physically distinct elements. Indeed, the secondary structure elements of the ND1 intron can contain two different coding sequences located at two different positions within the intron.  相似文献   

5.
6.
7.
Economical methods by which gene function may be analysed on a genomic scale are relatively scarce. To fill this need, we have developed a transposon-tagging strategy for the genome-wide analysis of disruption phenotypes, gene expression and protein localization, and have applied this method to the large-scale analysis of gene function in the budding yeast Saccharomyces cerevisiae. Here we present the largest collection of defined yeast mutants ever generated within a single genetic background--a collection of over 11,000 strains, each carrying a transposon inserted within a region of the genome expressed during vegetative growth and/or sporulation. These insertions affect nearly 2,000 annotated genes, representing about one-third of the 6,200 predicted genes in the yeast genome. We have used this collection to determine disruption phenotypes for nearly 8,000 strains using 20 different growth conditions; the resulting data sets were clustered to identify groups of functionally related genes. We have also identified over 300 previously non-annotated open reading frames and analysed by indirect immunofluorescence over 1,300 transposon-tagged proteins. In total, our study encompasses over 260,000 data points, constituting the largest functional analysis of the yeast genome ever undertaken.  相似文献   

8.
A role for branchpoints in splicing in vivo   总被引:2,自引:0,他引:2  
G Rautmann  R Breathnach 《Nature》1985,315(6018):430-432
The nucleotides immediately surrounding intron/exon junctions of genes transcribed by RNA polymerase B can be derived from 'consensus' sequences for donor and acceptor splice sites by only a few base changes. Studies in vivo have underlined the importance of these junction nucleotides for splicing. In higher eukaryotes, no evidence has been found for specific internal intron sequences involved in splicing. However, the recent discovery that, in vitro, introns are excised in a lariat form where the 5' end of the intron is joined via a 2'-5'-phosphodiester linkage to an A residue (branchpoint acceptor) close to the 3' end of the intron, suggests that internal intron sequences may nonetheless be important for splicing. Indeed, in yeast nuclear genes, the internal sequence 5'-TACTAAC-3' (or close homologue) is essential for splicing in vivo. A proposed consensus sequence for branchpoints in mammalian introns is 5'-CT(A/G)A(C/T)-3'. This sequence resembles the essential yeast internal sequence. Are branchpoints involved in the splicing of introns of higher eukaryotes in vivo? We show here that a branchpoint sequence from a human globin gene (5'-CTGACTCTCTCTG-3') greatly enhances the efficiency of splicing of a 'synthetic' intron in HeLa cells. A mutated branchpoint sequence, 5'-CTCCTCTCTCTG-3', in which the branchpoint acceptor nucleotide A has been deleted and the neighbouring purine G mutated to a C, does not exhibit this enhancing capability. We conclude that branchpoints have an important function in the splicing process in vivo.  相似文献   

9.
Disruption of the actin cytoskeleton in yeast capping protein mutants   总被引:42,自引:0,他引:42  
J F Amatruda  J F Cannon  K Tatchell  C Hug  J A Cooper 《Nature》1990,344(6264):352-354
Capping protein controls the addition of actin subunits to the barbed end of actin filaments and nucleates actin polymerization in vitro. Capping protein has been identified in all eukaryotic cells examined so far; it is a heterodimer with subunits of relative molecular masses 32,000-36,000 (alpha-subunit) and 28,000-32,000 (beta-subunit). In skeletal muscle, capping protein (CapZ) probably binds the barbed ends of actin filaments at the Z line. The in vivo role of this protein in non-muscle cells is not known. We report here the characterization of CAP2, the single gene encoding the beta-subunit of capping protein in Saccharomyces cerevisiae. Yeast cells in which the CAP2 gene was disrupted by an insertion or a deletion had an abnormal actin distribution, including the loss of actin cables. The mutant cells were round and large, with a heterogeneous size distribution, and, although viable, grew more slowly than congenic wild-type cells. Chitin, a cell wall component restricted to the mother-bud junction in wild-type budding yeast, was found on the entire mother cell surface in the mutants. The phenotype of CAP2 disruption resembled that of temperature-sensitive mutations in the yeast actin gene ACT1, indicating that capping protein regulates actin-filament distribution in vivo.  相似文献   

10.
We have isolated a precursor of yeast tRNATyr and shown that it contains an intervening sequence identical to that found in the gene for tRNATyr. The conformation of pre-tRNATyr is similar to that of mature tRNATyr except for the anticodon loop. The loop is sensitive to endonucleolytic cleavage by S1 nuclease near to the ends of the intervening sequence. This pre-tRNA is functionally inactive as it cannot be aminoacylated and the anticodon is not accessible for hydrogen bonding. A crude nuclear extract from yeast contains an excision-ligase activity which will process pre-tRNATyr into mature tRNATyr.  相似文献   

11.
Langkjaer RB  Cliften PF  Johnston M  Piskur J 《Nature》2003,421(6925):848-852
Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications. Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes. Duplication(s) could have occurred before or after a given speciation. To understand the evolution of the yeast genome, we analysed orthologues of some of these genes in several related yeast species. On the basis of the inferred phylogeny of each set of genes, we were able to deduce whether the gene duplicated and/or specialized before or after the divergence of two yeast lineages. Here we show that the gene duplications might have occurred as a single event, and that it probably took place before the Saccharomyces and Kluyveromyces lineages diverged from each other. Further evolution of each duplicated gene pair-such as specialization or differentiation of the two copies, or deletion of a single copy--has taken place independently throughout the evolution of these species.  相似文献   

12.
Functional profiling of the Saccharomyces cerevisiae genome   总被引:1,自引:0,他引:1  
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.  相似文献   

13.
14.
酵母全基因组新的ORF结构的预测   总被引:9,自引:6,他引:3  
提出了一个预测DNA序列中无内含子的开阅读框架(ORF)的理论方法-终止密码预测法;用酵母全基因组中已知的6260个基因进行检验,预测成功率为99.9%;发现酵母基因编码区和已知的DRF的起始密码子总是位于长距离不出现终止密码的位置序列上游紧邻最后一个终止密码子的ATG;在酵母全基因组DNA中发现了新的长度不小于90个氨基酸的ORF结构2244个。  相似文献   

15.
Human U2 snRNA can function in pre-mRNA splicing in yeast   总被引:12,自引:0,他引:12  
E O Shuster  C Guthrie 《Nature》1990,345(6272):270-273
The removal of introns from messenger RNA precursors requires five small nuclear RNAs (snRNAs), contained within ribonucleoprotein particles (snRNPs), which complex with the pre-mRNA and other associated factors to form the spliceosome. In both yeast and mammals, the U2 snRNA base pairs with sequences surrounding the site of lariat formation. Binding of U2 snRNP to the highly degenerate branchpoint sequence in mammalian introns is absolutely dependent on an auxiliary protein, U2AF, which recognizes a polypyrimidine stretch adjacent to the 3' splice site. The absence of this sequence motif in yeast introns has strengthened arguments that the two systems are fundamentally different. Deletion analyses of the yeast U2 gene have confirmed that the highly conserved 5' domain is essential, although the adjacent approximately 950 nucleotides can be deleted without any phenotypic consequence. A 3'-terminal domain of approximately 100 nucleotides is also required for wild-type growth rates; the highly conserved terminal loop within this domain (loop IV) may provide specific binding contacts for two U2-specific snRNP proteins. We have replaced the single copy yeast U2 (yU2) gene with human U2 (hU2), expecting that weak or no complementation would provide an assay for cloning additional splicing factors, such as U2AF. We report here that hU2 can complement the yeast deletion with surprising efficiency. The interactions governing spliceosome assembly and intron recognition are thus more conserved than previously suspected. Paradoxically, the conserved loop IV sequence is dispensable in yeast.  相似文献   

16.
17.
18.
In this experiment, F2 chicken derived from Broilers crossing to Silky are used to study the effect of growth hormone gene on growth and carcass traits. The partial gene is amplified by two pairs of primers, and single nucleotide polymorphism (SNPs) is detected by the technique of PCR-RFLP (restriction fragment length polymorphism), and then confirmed by DNA sequencing. The mutations are found in intron 3 and intron 4 respectively, and can be clarified by digestion with EcoRVand Msp I. The results of least square analysis indicate that the gene has significant association with some carcass traits, such as breast muscle weight, breast muscle rate, abdominal fat rate, and has no association with other growth and carcass traits, such as live weight, carcass weight, eviscerated yield with giblet, eviscerated yield, leg muscle weight, heart weight, liver weight, abdominal fat weight, chest angle width, head and neck weight,shank and claw weight, wing weight, muscular stomach weight, glandular stomach weight, ovary or testicular weight, shank girth, small intestine length, 1-week body weight, 6-week body weight, 12-week body weight, etc. These results demonstrate that GH gene could be a genetic locus or linked to a major gene significantly affecting the growth and carcass traits in chicken.  相似文献   

19.
Cloning and characterization of a new actin gene from Oryza sativa L.   总被引:1,自引:0,他引:1  
Using Rho family member osRACD as bait, a new member of actin gene family -Act was isolated from Oryza sativa by yeast two-hybrid system. The full-length cDNA was cloned with 5' RACE technology, which contains an open reading frame of 1134 bp with a predicted protein of 377 amino acids. Sequence alignment revealed 96% to 81.8% identities with some known actin proteins in plants. The method of bioinformatics was used to analyze the protein modification sites, structure and evolution of the gene. Southern blot analysis showed that Act is a single-copy gene in the genome. The result of RT-PCR showed it is ubiquitously expressed in root, shoot, callus and panicle in a temporal fashion. The relationship between Rho family and actin family in evolution and function was also studied.  相似文献   

20.
S Takeda  T Naito  K Hama  T Noma  T Honjo 《Nature》1985,314(6010):452-454
The specificity of monoclonal antibodies provides a powerful diagnostic and therapeutic tool in investigating human neoplasia. Radiological scanning and immunotherapy with mouse tumour-specific monoclonal antibodies have been applied to patients with some success, but a major problem is the neutralization of the mouse antibody induced by repeated administration of heterologous antibodies. To avoid or reduce such immune reactions, chimaeric immunoglobulins consisting of mouse variable (V) and human constant (C) regions can be synthesized. We have constructed a recombinant retrovirus DNA carrying genomic heavy-chain (H) variable-diversity joining (VH-D-JH) and C gamma 1 genes from different species and show here that the chimaeric intervening sequences are spliced out precisely. This procedure provides a useful method to construct the chimaeric mouse-human immunoglobulin gene to be expressed in Escherichia coli, yeast and animal cells. Unexpectedly, a hidden splice donor site in the 5'-flanking region of a human VH gene is used in place of the donor site of the leader sequence exon, resulting in the formation of the V region without the leader sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号