首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in southwest monsoon precipitation. The d-excess variation in over one year at Nyalam station will clarify this phenomenon. Studies show that the high d-excess is related to the seasonal variation of moisture transport to this region. The d-excess values are low during the southwest monsoon active periods, when moisture originated from the humid ocean surface. The d-excess values are higher in non-monsoon months, when moisture is derived from westerly transport. Winter and spring precipitation accounts for a substantial portion of the annual precipitation, resulting in higher d-excess in the yearly precipitation in the middle of Himalayas than other parts of the southern Tibetan Plateau. This finding reveals that the precipitation in the middle of Himalayas is not purely from southwest monsoon, but a large portion from the westerly transport, which is very important for ice core study in this area.  相似文献   

2.
Gao  Jing  Tian  LiDe  Liu  YongQin  Gong  TongLiang 《科学通报(英文版)》2009,54(16):2758-2765
Given the potential use of stable isotope in the paleoclimate reconstruction from lacustrine records as well as in the local hydrology cycle, it is crucial to understand the processes of stable isotope evolution in catchment in the Tibetan Plateau region. Here we present a detailed study on the water oxygen isotope based on 2 years observation including precipitation, river water and lake water in the Yamzho Lake, south of the Tibetan Plateau. Temporal variation of local precipitation 5180 shows an apparent "monsoon cycle". In monsoon season, 5180 in waters is lower. In non-monsoon season, δ^18O in precipitation and lake water is higher and higher river δ^18O exists in spring, probably reflecting the effect of land surface evaporation, together with the higher δ^18O values in spring precipitation. It is also found that the surface lake water δ^18O varies seasonally and annually. The lower lake water δ^18O in the late summer is apparently related to the summer monsoon precipitation. The mean δ^18O value of lake water in 2007 is 1.2‰ higher than that in 2004, probably due to the less monsoon precipitation in summer of 2007, as can be confirmed from the precipitation data at the Langkazi meteorological data. It is also found that an obvious shift of vertical lake water δ^18O reflects the fast mixture of lake water. δ^18O values of lake water are over 10‰ higher than those of precipitation and river water in this region due to the evaporation fractionation. The modeled results show that the evaporation process of the lake water is sensitive to relative humidity, and the present lake water δ^18O reflects a relative humidity of 51% in the Yamzho Lake. It shows that the lake will take 30.5 years to reach present lake water δ^18O given a large shift in the input water δ^18O. The modeled results also reveal that surface lake water temperature and inflow δ^18O have slight effect on the isotopic balance process of lake water in the Yamzho Lake.  相似文献   

3.
This paper presents the stable isotope data of the snow pack and summer precipitation collected at the July 1 Glacier, Qilian Mountains in northwest China and analyses their relationships with meteorologi- cal factors. On an event scale, there is no temperature effect on the δ 18O values in the summer pre- cipitation, whereas the amount effect is shown to be clear. By tracing the moisture transport history and comparing the precipitation with its isotopic composition, it is shown that this amount effect not only reflects the change in moisture trajectory, which is related to the monsoon activities, but is also associated with the cooling degree of vapor in the cloud, the evaporation of falling raindrops and the isotopic exchange between the falling drops and the atmospheric vapor. As very little precipitation occurs in winter, the snow pack profile mainly represents the precipitation in the other three seasons. There are low precipitation δ 18O ratios in summer and high ratios in spring and autumn. The Meteoric Water Line (MLW) for the summer precipitation is δ D = 7.6 δ 18O 13.3, which is similar to that at Delingha, located in the south rim of the Qilian Mountains. The MWL for the snow pack is δ D = 10.4 δ 18O 41.4, showing a large slope and intercept. The deuterium excess (d) of the snow pack is positively correlated with δ 18O, indicating that both d and δ 18O decrease from spring to summer and increase from early autumn to early spring. This then results in the high slope and intercept of the MWL. Sea- sonal fluctuations of d in the snow pack indicate the change of moisture source and trajectory. During spring and autumn, the moisture originates from continental recycling or rapid evaporation over rela- tively warm water bodies like Black, Caspian and Aral Seas when the dry westerly air masses pass over them, hence very high d values in precipitation are formed. During summer, the monsoon is responsi- ble for the low d values. This indicates that the monsoon can reach the western part of the Qilian Mountains.  相似文献   

4.
A new approach to forecast the middle-lower reaches of the Yangtze River Valley summer rainfall in June-August (JJA) is proposed in this paper. The year-to-year increment of the middle-lower reaches of the Yangtze River Valley is forecasted and hence the summer precipitation could be predicted. In this paper, DY is defined as the difference of a variable between the current year and the preceding year (year-to-year increment). YR denotes the seasonal mean precipitation rate of the middle-lower reaches of the Yangtze River Valley summer rainfall. After analyzing the atmospheric circulation anomalies in winter and spring that were associated with the DY of YR, six key predictors for the DY of YR have been identified. Then the forecast model for the DY of YR is established by using the multi-linear regression method. The predictors for the DY of YR are Antarctic Oscillation, the meridional wind shear between 850hPa and 200hPa over the Indo-Australian region, and so on. The prediction model shows a high skill for the hindcast during 1997-2006, with the average relative root mean square error is at 18%. The model can even reproduce the upward and downward trends of YR during 1984--1998 and 1998--2006. Considering that the current operational forecast models of the summer precipitation over the China region have the average forecast scores at 60%--70% and that the prediction skill for the middle-lower reaches of Yangtze River Valley summer precipitation remains quite limited up to now, thus this new approach to predict the year-to-year increment of the summer precipitation over the Yangtze River Valley (and hence the summer precipitation itself) has the potential to significantly increase the operational forecast skill of the summer precipitation.  相似文献   

5.
Jiang  XiuYang  He  YaoQi  Shen  ChuanChou  Kong  XingGong  Li  ZhiZhong  Chang  YuWei 《科学通报(英文版)》2012,57(7):795-801
An absolute-dated, bi-decadal-resolution, stalagmite oxygen-isotopic time series from Shigao Cave reveals the evolution of summer monsoon precipitation over the past 9.9 ka BP in northern Guizhou Province, Southwest China. The  18O-inferred climate conditions are divisible into three distinct stages: (1) a maximum humid era from 9.9-6.6 ka BP; (2) a gradual declining precipitation interval between 6.6-1.6 ka BP; and (3) a relatively low precipitation time window after 1.6 ka BP. Consistency of contemporaneous stalagmite Holocene 18O records between Shigao and other caves in the Indian and East Asian monsoon realms support the effect of primary orbital solar forcings on monsoonal precipitation. However, statistical analysis shows a significant spatial asynchroneity of the Holocene Optimum termination in the Asian monsoon territory. The Holocene Optimum ended at 7.2-7.4 ka BP in Oman, located in the Indian monsoon region, and at 5.6-5.8 ka BP in Central China, in the East Asian monsoon zone. In Southwest China, the termination occurred between these periods, at 6.6-7.0 ka BP, and was influenced by both monsoon systems. We propose that this spatially asynchronous ending of Holocene Optimum in Asia may be attributed to sea surface temperature changes in the western tropical Pacific, which is a primary moisture source for the East Asian monsoon.  相似文献   

6.
Considering the different uplifting time of different subregions of the Himalaya-Tibetan Plateau(TP),a series of numerical simulations have been conducted with the Community Atmosphere Model(CAM4) developed at the National Center for Atmospheric Research to explore the effects of the phased tectonic uplift of the Himalaya-TP on the evolution of Asian summer monsoons.The results show that the uplifts of the Himalaya and northern TP significantly affect the evolutions of South Asian summer monsoon and northern East Asian summer monsoon respectively.That is,the tectonic uplift of the Himalaya intensifies the South Asian summer monsoon circulation and increases the precipitation in South Asia,whereas the uplift of the northern TP intensifies the northern East Asian summer monsoon circulation and increases the precipitation in northern East Asia.Compared with previous simulations,current comparative analyses of modeling results for different subregional uplifts within the Himalaya-TP help deepen our understanding of the evolutionary history of Asian monsoons.  相似文献   

7.
Yao  TanDong  Zhou  Hang  Yang  XiaoXin 《科学通报(英文版)》2009,54(16):2724-2731
The δ^18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform (TORP) is studied, with the focus on the altitude effect of δ^18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ^18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ^18O composition in plateau precipitation and river water. The δ^18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ^18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ^18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ^18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ^18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.  相似文献   

8.
Analysis of daily precipitation samples for stable oxygen isotopes (δ^18O) collected at the Shiquanhe and Gerze (Gaize, Gertse) stations in the Ngari (Ali) region on the western Tibetan Plateau indicates that air temperature affects the δ^18O variations in precipitation at these stations. In summer, Shiquanhe and Gerze show strongly similar trends in precipitation δ^18O, especially in simultaneous precipitation events. Moreover, both stations experienced low δ^18O values in precipitation during the active monsoon period, resulting from the southwest monsoon (the summer phase of the Indian monsoon). However, during the break monsoon period (during the summer rainy season, when the monsoon circulation is disrupted), δ^18O values in summer precipitation remain relatively high and local moisture recycling generally controls the moisture sources. Air temperature correlations with δ^18O strengthen during the non-monsoon period (January--June, and October--December) due to continental air masses and the westerlies. In addition, evaporation also influences the δ^18O variations in precipitation. The observed temporal and spatial variations of δ^18O in precipitation on the western Tibetan Plateau and adjacent regions show that the late May and early June-the late August and early September time frame provides an important period for the transportation of moisture from various sources on the Tibetan Plateau, and that the region of the West Kunlun-Tanggula Ranges acts as a significant climatic divide on the Plateau, perhaps for all of western China.  相似文献   

9.
Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above normal after 2002;in recent decades there has been rapid warming of surface air,moistening and wind speed decrease.To investigate the influences of recent climatic changes on the water budget,this study simulates the surface water budget at CMA stations within and surrounding the source region during 1960-2006,using an improved land surface model.Results indicate that the spatial pattern of precipitation change is an important factor(except for precipitation amount and intensity) in determining the response of runoff to precipitation changes.Low runoff in the 1990s was consistent with precipitation amount and intensity.The recovery of precipitation after 2002 is mainly from increased precipitation in the dry area of the source region.Evaporation was mainly limited by water availability in this dry area,and thus most of the precipitation increase was evaporated.By contrast,energy availability was a more important influence on evaporation in the wet area.There was more evaporation in the wet area because of rapid warming,although precipitation amount partly decreased and partly increased,contributing to the reduction of runoff after 2002.This control on evaporation and its response,together with the modified spatial pattern of precipitation,produced a water budget unfavorable for runoff generation in the source region during recent years.  相似文献   

10.
The assessment of water security is an important content in the security management of water resources due to the fact that the state of water security directly affects both the sustainable development of regional economy and the improvement on the living quality of mankind. Grey associative analysis is introduced and applied to assessment of water security on the basis of grey characteristics of the assessment index system of water security. As a case study shows, grey associative analysis is used for evaluating water security of some provinces in China, and the satisfactory assessment results are obtained. The sequence of provinces in China with regard to water security from good to poor is obtained and, moreover, the water security level of each region is also confirmed. The results obtained accord with the actual state of each region. They are of practical significance and can be used to guide the management of regional water security and a sustainable development of the economy therein. At the same time, the results demonstrate that grey associative analysis provides a new method for assessing water security  相似文献   

11.
Wen  Rong  Tian  LiDe  Weng  YongBiao  Liu  ZhongFang  Zhao  ZhongPing 《科学通报(英文版)》2012,57(14):1693-1698
The lapse rate of water isotopes is used in the study of the hydrologic cycle as well as in the estimation of uplift of the Tibetan Plateau.The greater elevation contrast in the Southern Himalayas allows for a detailed discussion about this lapse rate.We analyze variations of 18δO in precipitation and river water between 1320 m and 6700 m elevations in the Southern Himalayas,and calculate the specific lapse rate of water 18δO.The results show that the multi-year average lapse rate in precipitation over this region is 0.15‰/100 m.The one-year average lapse rate is 0.17‰/100 m from three sites along the Southern Himalayas.The two results agree,but are much lower than the global average of 0.28‰/100 m.This work also shows that there is a difference in precipitation 18δO lapse rate between the monsoon and non-monsoon seasons.The calculated precipitation lapse rate is much lower than that in surface water.  相似文献   

12.
The present paper presents a concise summary of our recent studies on the Asian summer monsoon, with highting decadal and inter-decadal scales. The studies on the long-term variations of the Asian summer monsoon and its impacts on the change in the summer precipitation in China are reviewed. Moreover, recent changes in the Asian summer monsoon and summer precipitation in East Asia (including Meiyu precipitation) are discussed. Finally, the future changes of the Asian summer monsoon are also pointed out in this paper.  相似文献   

13.
Qiao  YanSong  Zhao  ZhiZhong  Wang  Yan  Fu  JianLi  Wang  ShuBing  Jiang  FuChu 《科学通报(英文版)》2009,54(24):4697-4703
The West Sichuan Plateau is located in the southeast margin of the Tibetan Plateau, where the climate is mainly influenced by the Indian southwest summer monsoon and the Tibetan Plateau monsoon. In this study, detailed geochemical analysis has been carried out on Ganzisi loess-paleosol sequence in Ganzê County of western Sichuan Province. The results indicate that Ganzê loess and paleosol have experienced the incipient stage of chemical weathering in dust source regions, characterized by the decomposition of plagioclase which caused the depletion of mobile elements Na and Ca. The post-depositional chemical weathering is characterized by carbonate dissolution and oxidation of Fe2+. The variations of some geochemical indexes (such as CIA values, Na/K and Fe2+/ Fe3+ ratios) in Ganzisi loess-paleosol sequence indicate a gradually decreased chemical weathering intensity in the dust source regions and deposition areas since 1.15 Ma BP consistent with the general increase of global ice volume, reflecting that the arid trend since 1.15 Ma BP in the southeast Tibetan Plateau is a regional response to the global climate change. The geochemical indexes in this section also reveal an obvious drying step occurred at about 250 ka BP in this region. We interpret this drying step as a result of decreased influence of the Indian southwest summer monsoon. This decrease in monsoon moisture is probably attributable to the uplift of the southeast margin of the Tibetan Plateau at about 250 ka BP.  相似文献   

14.
Xu  YanWei  Kang  ShiChang  Zhang  YuLan  Zhang  YongJun 《科学通报(英文版)》2011,56(14):1511-1517
During the summer monsoon season,the moisture of precipitation events in southern and central regions of the Tibetan Plateau is mainly moisture from the Indian Ocean transported by the Indian monsoon and terrestrial vapor derived from the surface of the Tibetan Plateau.However,the respective contributions of these two types of moisture are not clear.From June to September,the excess deuterium values of precipitation and river water in the Nam Co basin are higher than those for the southern Tibetan Plateau.This reflects the mixing of evaporation from Nam Co and local atmospheric vapor.On the basis of theory for estimating the contribution of evaporative vapor from surface water bodies to atmospheric vapor and relative stable isotopes in water bodies (precipitation,river water,atmospheric moisture and lake water),this study preliminarily estimates that the average contribution of evaporation from the Lake Nam Co to local atmospheric vapor has varied from 28.4% to 31.1% during the summer monsoon season in recent years.  相似文献   

15.
To obtain more accurate correlation dimension estimations for chaotic time series, a novel scaling region identification method is developed. First, points that obviously do not belong to the scaling region associated with the whole double logarithm correlation integral curve are removed using the K-means algorithm. Second, a point-slope-error algorithm is developed to recognize a possible scaling region. Third, the K-means algorithm is used again to further remove a small interval of interfering points in the possible scaling region to obtain a more precise scaling region. The correlation dimension of four typical chaotic attractors and five curves generated by the Weierstrass-Mandelbrot fractal function were calculated using the proposed method. These calculated values were very close to the respective theoretical fractal dimensions. Moreover, the effectiveness of our method in identifying the scaling region was compared with existing methods. Results show that our method can distinguish the scaling region objectively, accurately, automatically and quickly, making estimations of the correlation dimension more precise and affording significant improvements in nonlinear analysis.  相似文献   

16.
Meng  XianWei  Xia  Peng  Zheng  Jun  Wang  XiangQin 《科学通报(英文版)》2011,56(6):547-551
Evolution of the East Asian monsoon and its response to uplift of the Tibetan Plateau has been investigated in the study of global change. Core sediment samples drilled in the South China Sea during ODP Leg184 are the best materials for studying long-term variability of the East Asian monsoon. R-mode factor analysis of major elements in the fine grain-sized carbonate-free sediments (<4 μm) of the upper 185 mcd splice of ODP Site 1146 drilled during Leg184 in the South China Sea shows that Ti, TFe2O3, MgO, K2O, P, CaO, and Al2O3 are representative of a terrestrial factor. The variation in the terrestrial factor score is subject to chemical erosion in the source region and thus indicates the evolution of the East Asian summer monsoon. The terrestrial factor score has three stepwise decreases at ~1.3 Ma, ~0.9 Ma, and ~0.6 Ma, indicating the phased weakening of the East Asian summer monsoon is related to wholly stepwise, quick uplifts of the Tibetan Plateau since 1.8 Ma. The periodic fluctuation of the terrestrial factor score since ~0.6 Ma indicates that the glacial-interglacial cycles have been the main force driving the evolution of the East Asian monsoon. As in the case of Chinese loess, the long-term evolution of the East Asian monsoon recorded in sediments of the South China Sea reflects a coupled effect of the glacial-interglacial cycle and uplift of the Tibetan Plateau.  相似文献   

17.
Climate extremes and changes in eastern China are closely related to variations of the East Asian summer monsoon and corresponding atmospheric circulations.The relationship between frequencies of temperature and precipitation extremes in China during the last half century is investigated using Singular Value Decomposition analysis.During 1980-1996,there was a typical pattern with fewer hot days and more precipitation extremes in the northern part of eastern China,and more hot days and fewer precipitation extremes in the southern part.This geographic pattern tended to reverse after 1997,with fewer hot days and more extreme precipitation days south of the Yangtze River and vice versa to the north.Differences in atmospheric circulation between the former and latter periods are presented.We conclude that a mid-level anomalous high/low,upper-level anomalous easterlies/westerlies over the north/south of eastern China,a weakened East Asian summer monsoon and associated upper-tropospheric center of cooling(30°N,110°E) are all favorable for the changes in frequencies of temperature and precipitation extremes.  相似文献   

18.
The assessment of water security is an important content in the security management of water resources due to the fact that the state of water security directly affects both the sustainable development of regional economy and the improvement on the living quality of mankind.Grey associative analysis is introduced and applied to assessment of water security on the basis of grey characteristics of the assessment index system of water security.As a case study shows,grey associative analysis is used for evaluating water security of some provinces in China,and the satisfactory assessment results are obtained.The sequence of provinces in China with regard to water security from good to poor is obtained and,moreover,the water security level of each region is also confirmed.The results obtained accord with the actual state of each region.They are of practical significance and can be used to guide the management of regional water security and a sustainable development of the economy therein.At the same time,the results demonstrate that grey associative analysis provides a new method for assessing water security quantitatively but needs a further study.  相似文献   

19.
Based on the daily δ~(18)O data in June―September 2003 at Lijiang and the daily mean NCEP/ NCAR reanalysis data, synoptic-scale variation of δ~(18)O in summer monsoon rainfall was investigated. The 'precipitation amount effect' is obvious for the daily δ~(18)O variation, whereas the 'temperature effect' is insignificant. Alternate occurrences of active phase and break phase of the southwest monsoon probably influence the synoptic-scale δ~(18)O variation prominently. Moreover, the isotopic composition in precipitation during the late monsoon months is presumably influenced significantly by recycling of monsoon precipitation. Both the above factors disturb the 'amount effect' of isotopic variation in the monsoon region. This study also indicates that the synoptic-scale rainfall δ~(18)O variation at Lijiang in summer is domi-nated by the Indian monsoon depression (low pressure) system at large scale. These results are important for further studying the 'amount effect' and reconstructing paleoclimate in the monsoon region.  相似文献   

20.
The southeastern Chinese Loess Plateau is the terminal deposition area of dusts transported by the East Asian winter monsoon and the frontal area penetrated by the East Asian summer monsoon,and thus a climate sensitive region.This paper reports a rock magnetic study of a Quaternary loess-paleosol section in such a region.We tried to reconstruct the paleoclimate evolution history in the region during 1.95–0.40 Ma with magnetic parameters.The results show a general up-section decreasing trend of the ratio of HIRM/(SIRM–IRM100 mT),indicating a long-term decreasing trend of hematite coercivities in the deposits,which can be mainly related to the cooling and aridification trend of the environment in interglacial depositional area and glacial dust source region.The ratio,lf/ARM,widely used to reflect the variations of magnetic mineral grain size,manifests a long-term increasing trend of the magnetic mineral grain size and tends to indicate an overall weakening trend of the East Asian summer monsoon that controlled the pedogenic intensity.Although the regional multi-segmented paleoclimatic records revealed by several magnetic parameters in our study,the long-term Asian cooling and aridification trend inferred here is of global correlation significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号