首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
固态染料敏化二氧化钛纳晶薄膜太阳能电池的研究进展   总被引:4,自引:1,他引:4  
固态染料敏化太阳能电池是目前能源研究的热点领域之一。我们设计并合成了一系列含有不同特性基团(如柔软的高分子链、可现场固化基团和高电导的离子液体基团)的高分子固态电解液应用于染料敏化太阳能电池;同时,结合理论模拟计算得出的二氧化钛纳晶薄膜工作电极和对电极的光散射效应与光限域效应能提高电池的光吸收效率,二氧化钛纳晶薄膜孔隙率的增大能增加固态电解液在膜内的渗透和扩散,对工作电极和对电极进行结构优化可得到高光电转换效率的固态染料敏化太阳能电池。  相似文献   

2.
Honeycomb structure is extraordinarily effective to trap light,and the efficiency of solar cell with this texture is as high as 24.4%.In this paper,plasma immersion ion implantation and acid etching are applied to texture multi-crystalline silicon.Surface reflectivity and surface morphology are investigated by UV–Vis–NIR spectrophotometer and field emission scanning electron microscopy,respectively.We found that random nano-honeycomb structures have been formed on silicon surface.The weighted average reflectance is 7.68%from 300 to 1,100 nm wavelength region.We obtained honeycomb-textured solar cells following standard fabrication protocol.These solar cells show obvious better performance in short circuit current density([5.4%)and efficiency(*0.8%absolute)compared with acid-textured cell,while other performance parameters,such as open circuit voltage and fill factor,are not deteriorated.  相似文献   

3.
Organic polymer solar materials are shown to exhibit better solubility in mixed solvents than in pure ones,which affects the performance of their solar cells.In this article,poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4.7-di-2-thienyI-2,l,3-benzothiadiazole)(PCDTBT0)and[6,6]-phenyl-C71-butyric acid methyl ester(PC_(71)BM)are used as active layer materials in solar cells.To optimize the performance of these active materials,the ratio of chloroform(CF)to chlorobenzene used as solvents to dissolve PCDTBT,and PC_(71)BM is varied,which is shown to affect power conversion efficiency(PCE).The solar cell that shows the best performance with a PCE as high as 6.82%is produced using a volume ratio of CF to chlorobenzene of1:1.  相似文献   

4.
Vertically aligned TiO2 nanotube arrays (-8 μm long, -110nm wide) have been fabricated through anodic oxidation of Ti-metal sheet in fluoride- containing electrolyte. By changing the volume ratio of ethylene glycol and diethylene glycol in the electrolyte, TiO2 nanotube arrays with different tube-to-tube lateral spacing, i.e., closely packed, just separated, and fully separated, have been synthesized and applied as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic efficiency of 2.99 %, 3.34 %, and 3.44 % has been obtained for DSSCs based on the closely packed, just separated, and fully separated TiO2 nanotube arrays, respectively, illustrating the effect of tube-to-tube lateral spacing of TiO2 nanotube arrays on the performances of DSSCs. It is suggested that fully separated TiO2 nanotube arrays are beneficial to the conversion efficiency of DSSCs due to higher dye loading and faster electron transfer.  相似文献   

5.
染料敏化太阳能电池是近十几年来发展起来的新型高效率、低成本电池。电解质是关系到该电池稳定性的重要材料。介绍了染料敏化太阳能电池电解质的分类,讨论了准固态电解质和固态电解质的优缺点及其研究进展。使用传统的液态电解质获得的光电转换效率较高,但稳定性受到一定的影响,使用准固态电解质和固态电解质制备的染料敏化太阳能电池,稳定性有了较大的提高。重点讨论了准固态电解质以及无机p型半导体材料、有机p型半导体材料和导电高聚物等几种主要的固态电解质的特点和相应的电池稳定性。  相似文献   

6.
研究分为两部分讨论:(1)是利用无电镀与自组装单分子层表面改质技术制备用于染料敏化太阳能电池上具有催化性的铂对电极;(2)是利用无电镀与微米压印法技术制备硅单晶太阳能电池的电极.适当的表面改质技术(Self-assembled monolayers,SAMs)成功地开发出一低温湿式制程,可制备出具有高度选择性的铂对电极用于透明导电玻璃面上.通过原子力显微镜分析,发现3-(2-Aminoethylamino)propylmethyl-dimethoxysilane(Me-EDA-Si)可成功的改质于透明导电玻璃上,同时利用高解析电子能谱仪来分析每一步骤的改质,证明钯触媒可成功的接于导电玻璃上以催化铂无电镀反应的进行,因而发现经无电镀沉积的薄膜呈现粗糙的表面而提高了铂触媒的活性表面积.因此利用无电镀所制备的铂对电极所组装而成的染料敏化太阳能电池具有较利用溅镀法所制备的铂对电极所组成之电池有较高的效率.为开发制备双层结构(无电镀Ni3P/电镀铜)的电极于硅单晶太阳能电池上作为收集太阳能电池所产生的电子.结合了无电镀与微米压印法来制备无电镀镍金属为导电层以取代传统的银浆.其优点在于利用无电镀镍作为导电层可降低与硅基材之间的接触电阻(NiP为10-4Ω.cm2,银为10-3Ω.cm2),更可大幅的降低线宽(小于40μm).另微米压印法不只能提升电池之效率更可提高模块之功率.在无抗反射层的相同条件下,利用无电镀与微米压印法所制备之电池其效率可高于传统利用银浆所制备之太阳能电池约1%左右的效率.  相似文献   

7.
Organic bulk heterojunction (BHJ) solar cells based on small molecular donors have received great attentions recently, because small molecules possess the merits of high purity, well-defined molecular structures, definite molecular weights and high charge carrier mobility. The highest power conversion efficiency (PCE) of BHJ solar cells based on small molecular donors and fullerene derivative acceptors has reached 7.38%. In this review, we will briefly summarize the development of small molecular donor based BHJ solar cells in the past two years. These results suggest that small molecular donors are promising candidates for high efficiency BHJ solar cells.  相似文献   

8.
A series of polymer solar cells (PSCs) based on poly (diketopyrrolopyrrole-terthiophene) (PDPP3T) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as active layer were fabricated to investigate the effect of 1,8- diiodooctane (DIO) on the performance of PSCs. The power conversion efficiency (PCE) of PSCs was increased from 3.77 % to 4.37 % for the cells with DIO additive. The underlying reason may be attributed to that DIO additive could make PC71BM more dispersive in the active layer, forming a better bicontinuous interpenetrating network for excition dissociation and charge carrier transport. There- fore, the short circuit current density (Jsc) and fill factor (FF) was increased from 8.25 to 9.18 mA/cm2 and from 67.2 % to 70.0 % for the PSCs with DIO additive compared with PSCs without DIO additive.  相似文献   

9.
Metal halide perovskite solar cells have attracted considerable attention because of their high-power conversion efficiency and costeffective solution-processable fabrication;however,they exhibit poor structural stability.Two-dimensional(2D)Ruddlesden-Popper(RP)perovskites could address the aforementioned issue and present excellent stability because of their hydrophobic organic spacer cations.However,the crystallographic orientation of 2D crystals should be perpendicular to the bottom substrates for charges to transport fast and be collected in solar cells.Moreover,controlling the crystallographic orientation of the 2D RP perovskites prepared by the solution process is difficult.Herein,we reviewed the progress of recent research regarding 2D RP perovskite films with the focus on the crystallographic orientation mechanism and orientation controlling methods.Furthermore,the current issues and prospects of 2D RP perovskites in the photovoltaic field were discussed to elucidate their development and application in the future.  相似文献   

10.
以高温固相法合成一系列Ce~(3+)-Nd~(3+)共掺Y_3Al_5O_(12)(YAG)发光材料.通过荧光光谱测试证明,在YAG基质中Ce~(3+)-Nd~(3+)之间发生宽谱高效近红外量子剪裁,能量传递机理为合作能量下转换.在460 nm波长激发下,Ce~(3+)离子吸收一个可见光子跃迁至5d_1能级,然后将自身能量传递给两个邻近的Nd~(3+),进而发射出两个近红外光子.对样品的荧光衰减曲线分析可知,Ce~(3+)-Nd~(3+)之间的量子效率高达177.8%.通过Ce~(3+)-Nd~(3+)之间的量子剪裁,可将太阳光谱中能量较高的紫外-可见波段转换为近红外波段,有利于太阳光谱更好地被晶硅太阳能电池吸收和利用.  相似文献   

11.
Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency (PCE) of plastic solar cells. To better understand the physics of photoactive layer in the organic photovoltaic devices, it is necessary to gain understanding of morphol- ogy and the corresponding electronic property. Herein we report the correlation between nanoscale structural, electric properties of bulk heterojunction (BHJ) solar cells and the annealing-induced PCE change. We demonstrate that the PCE of BHJ solar cells are dramatically improved (from 1.3 % to 4.6 %) by thermal annealing, which results from P3HT crystalline stacking and the PCBM aggregation for interpenetrated network. The similar trend for annealing- induced photovoltage and PCE evolution present as an initial increase followed by a decrease with the annealing time and temperature. The surface roughness increase slowly and then abruptly after the same inflection points observed for photovoltage and PCE. The phase images in electric force microscopy indicate the optimized P3HT and PCBM crystallization for interpenetrating network formation considering the spectroscopic results as well. From the correlation between surface photovoltage, blend morphology, and PCE, we propose a model to illustrate the film structure and its evolution under different annealing conditions. This work would benefit the better design and optimization of the morphology and local electric proper- ties of solar cell active layers for improved PCE.  相似文献   

12.
带有本征薄膜层的异质结(HIT)太阳能电池制备工艺温度低,转换效率高,高温特性好,是低价高效电池的一种。文章介绍了HIT电池的结构、原理、发展过程,着重阐述提高HIT电池效率的途径,最后对HIT电池的发展前景做了展望。  相似文献   

13.
太阳能是一种取之不尽、用之不竭的可再生清洁能源,对太阳能电池的研究与开发也变得日益重要;但是太阳能电池的转化效率低,制备工艺复杂,使得成本一直居高不下,远不能达到大规模应用的要求。本文在现有的材料,电池结构和生产工艺的基础上,研究其转化效率不高的影响因素,进而提出优化方案。  相似文献   

14.
采用水热法在不锈钢滤网上制备出Zn2SnO4纳米线.首次通过制备Zn2SnO4纳米线/CBS异质结构来提高复合体系的光生电荷分离效率;逐步改变CBS厚度系统研究了Zn2SnO4纳米线/CBS染料敏化太阳能电池的光电转换效率.结果表明Cu4Bi4S9为1.0μm时,Zn2SnO4纳米线/Cu4Bi4S9异质结具有最强稳态和电场诱导表面光伏效应,对应染料敏化电池最高光电转换效率为4.12%.从光吸收、薄膜厚度、内建电场和能级匹配等几个方面,讨论了异质结和固态染料敏化电池中光生电荷分离的影响因素以及光生电荷传输机制.  相似文献   

15.
Pure anatase TiO2 films have been made via hydration of titanium isopropoxide using a sol-gel tech- nique, while mixed TiO2 films which contained both anatase and rutile TiO2 were made from commercial P25 powder. Quasi-solid state dye-sensitized solar cells were fabricated with these two kinds of mesoporous films and a comparison study was carried out. The result showed that the open-circuit photovoltages (Voc) for both kinds of cells were essentially the same, whereas the short-circuit photo- currents (Isc) of the anatase-based cells were about 33% higher than that of the P25-based cells. The highest photocurrent intensity of the anatase-based cell was 6.12 mA/cm2 and that of the P25-based cell was 4.60 mA/cm2. Under an illumination with the light intensity of 30 mW/cm2, the corresponding en- ergy conversion efficiency was measured to be 7.07% and 6.89% for anatase-based cells and P25-based cells, respectively.  相似文献   

16.
A simple and efficient solid iodination method has been proposed for the fabrication of p-type γ-CuI thin films.The structural,morphological,optical,electrical and electrochemical properties have been investigated in order to serve as an effective hole-transporting layer in solid-state solar cells.The fabricated films exhibited p-type conductivity with resistivity of 7.0×10~(-2)Ωcm,the hole concentration of ~1.13×10~(19)cm~(-3)and the mobility of 18.34 cm~(-2)V~(-1)s~(-1).The cyclic voltammetry result shows a maximum specific capacitance of 43 mF/cm~2 at a scan rate of 10 mV/s.The cyclic stability and capacitance retention were found to be 99.7%.These findings demonstrate that γ-CuI film can be a potential candidate for multiple applications,such as a hole transporting material for solid-state solar cells and electrochemical supercapacitor.  相似文献   

17.
Hybrid nanostructures, comprising of a metal core and a semiconductor shell layer, show great potential for a new generation of low-cost solar cells due to their unique electronic and optical properties. However, experimental results have fallen far short of the ultra-high efficiency(i.e. beyond Shockley-Queisser limit) predicted by theoretical simulations. This limits the commercial application of these materials. Here, a non-transparent organic solar cell with an array of Ag/ZnO nanowires has been experimentally fabricated to increase the internal quantum efficiency(IQE) by a factor of 2.5 compared to a planar counterpart. This result indicates a significant enhancement of charge collection efficiency due to the ultrafast Ag nanowire channels. This hybrid nanostructure can also serve as a perfect back reflector for semi-transparent solar cells, which can result in enhanced light absorption by a factor of 1.8 compared to the reference samples. The enhanced charge collection and light absorption can make these Ag/ZnO nanostructures available for the application of modern optoelectronic devices.  相似文献   

18.
The effects of MoO3thin buffer layer on charge carrier injection and extraction in inverted configuration ITO/ZnO/MEH-PPV(poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene))/MoO3(0,5 nm)/Ag hybrid solar cells are investigated by capacitance–voltage measurement under dark and light illumination conditions.The efficiency of charge carrier injection and extraction is enhanced by inserting 5 nm MoO3thin layer,resulting in better device performances.Charge carrier transport of the whole device is improved and the interface energy barrier is reduced by inserting 5 nm MoO3thin buffer layer.The device fill factor is increased from 54.1%to 57.5%after modifying 5 nm MoO3.Simulations and experimental results consistently show that in the forward voltage under dark,the device with the 5 nm MoO3thin layer modification generates larger value of capacitance than the device without MoO3layer.While under illumination,the device with the 5 nm MoO3layer generates smaller value of capacitance than the device without the 5 nm MoO3layer in the bias region of reverse and before the peak position of maximum capacitance(VCmax).The underlying mechanism of the MoO3anode buffer layer on device current density–voltage characteristics is discussed.  相似文献   

19.
 高效太阳电池是近年太阳电池产业发展的目标,等离子体太阳电池技术则是近年来研究的比较活跃的高效太阳电池技术之一。该文对等离子体太阳电池,从原理,材料到技术的最新研究进展做了比较全面的论述。等离子体太阳电池主要是利用贵金属纳米颗粒的表面等离子体效应增强太阳电池的光吸收。该技术既可以用在传统的硅电池上也可以用在薄膜电池上,尤其适用于作为薄膜电池的陷光结构,并且易于和传统的电池制造工艺相结合,有实现商业化的潜力。  相似文献   

20.
叠层太阳能电池研究进展和发展趋势   总被引:1,自引:0,他引:1  
叠层太阳能电池结构可以拓宽吸收光谱,最大限度地将光能变成电能,提高了太阳能电池的能量转换效率,这类太阳能电池是目前研究的热点.本文集中介绍了非晶硅叠层太阳能电池、多元化合物叠层太阳能电池和染料敏化叠层太阳能电池的研究现状,对它们的结构、性能指标和效率等做了介绍和评估,指出了各自的优缺点,分析了阻碍叠层太阳能电池进一步发展和应用的制约因素主要有两个:很难找到两种晶格匹配良好的半导体晶体;对环境友好,价格合理,来源丰富的太阳能电池材料很稀少.非晶硅系叠层太阳能电池对材料纯度要求较高,价格贵;化合物太阳能电池虽然转换效率高,但是电池材料对环境造成污染;而染料敏化叠层太阳能电池制作工艺简单,电池材料来源丰富,必将是今后发展的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号