首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A JERF36 regulation gene, a selection marker gene (NPT-II), and the foreign genes levansucrase (SacB), Vitreoscilla hemoglobin (vgb), and Binary coleopterus insect resistance (BtCry3A OC-I) were co-transferred into Populus xeuramericana 'Guariento' using biolistic bombardment; 25 kanamycin resistant plants were obtained. The results of PCR and Southern hybridization showed that the foreign genes had been integrated into the genome of P. xeuramericana 'Guariento' and 5 genes were all transferred into 7 poplar plants. The results of a BtCry3A ELISA experiment indicated that the BtCry3A gene was expressed in the 7 transgenic poplar plants, and these plants grew well on coastal saline land.  相似文献   

2.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutinl gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of CrylAh protein in the construct containing the ubil intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubil intron was higher than that of the intronless construct. These results indicated that the maize ubil intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

3.
4.
Previously an AGAMOUS gene homologue PpMADS4 and a FRUITFULL gene homologue PpMADS6 were isolated from peach (Prunus persica), and both genes were shown to express in the developing floral and fruits. To gain insight into their function, the two genes were constitutively expressed in Arabidopsis thaliana and their effects on plant growth and floral organ development were studied in this work. The transgenic plants all displayed early flowering and conversion of inflorescence to floral meristem. However, the two genes had different effects on the floral organ structures in A. thaliana. The transgenic plants overexpressing PpMADS4 displayed homeotic conversion of floral organs, and particularly the perianth abscission was inhibited. The plants overexpressing PpMADS6 showed early flowering, produced higher number of carpels, petals, and stamens than nontransgenic plants, and pod shatter was prevented; significantly, the transgenic plants yielded more than one siliques from a single flower. A SSR molecular marker was developed for PpMADS4, and it was then assigned into the G5 linkage group of Prunus sp. Both PpMADS4 and PpMADS6 genes were located at the same region in the G5 linkage group. Our results showed the potential application of these two MADS box genes for crop and fruit tree improvement.  相似文献   

5.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutin1 gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of Cry1Ah protein in the construct containing the ubi1 intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubi1 intron was higher than that of the intronless construct. These results indicated that the maize ubi1 intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

6.
OsDREB1 Gene from Rice Enhances Cold Tolerance in Tobacco   总被引:2,自引:0,他引:2  
  相似文献   

7.
A comparative analysis of the codon usage bias in the newly discovered dUTPase gene (Assigned Accession No.: DQ486149) of the duck enteritis virus (DEV) and the dUTPase gene of 32 reference herpesviruses was performed. The results indicated that the DEV dUTPase gene encodes a protein of 477 amino acids, which includes five conserved motifs with a 3-1-2-4-5 arrangement. The codon adaptation index (CAI), effective number of codons (ENC), and GC3s values indicated synonymous codon usage bias in the dUTPase gene of herpesviruses, and this synonymous bias was correlated with host evolution. The codon usage patterns of the DEV dUTPase gene were phylogenetically conserved and similar to that of the dUTPase genes of the avian alphaherpesvirus. Although codon usage in each microorganism was different, there were no strain-specific differences among them. Sixty-one codons in the predicted polypeptide, with a strong bias towards A and T at the third codon position, were used. Comparison of the codon usage in the dUTPase gene of different organisms revealed that there were 19 codons showing distinct codon usage differences between the DEV and Escherichia coli dUTPase genes; 16 between the DEV and yeast dUTPase genes; and 15 between the DEV and human dUTPase genes. Analysis of variance (ANOVA) showed significant differences between the DEV and yeast dUTPase genes (r = 0.536, P 〈 0.01). The extent of codon usage bias in the DEV dUTPase gene was highly correlated with the gene expression level, therefore the results may provide useful information for gene classification and functional studies.  相似文献   

8.
Previously an AGAMOUS gene homologue PpMADS4 and a FRUITFULL gene homologue PpMADS6 were isolated from peach (Prunus persica), and both genes were shown to express in the developing floral and fruits. To gain insight into their function, the two genes were constitutively expressed in Arabidopsis thaliana and their effects on plant growth and floral organ development were studied in this work. The transgenic plants all displayed early flowering and conversion of inflorescence to floral meristem. However, the two genes had different effects on the floral organ structures in A. thaliana. The transgenic plants overexpressing PpMADS4 displayed homeotic conversion of floral organs, and par- ticularly the perianth abscission was inhibited. The plants overexpressing PpMADS6 showed early flowering, produced higher number of carpels, petals, and stamens than nontransgenic plants, and pod shatter was prevented; significantly, the transgenic plants yielded more than one siliques from a single flower. A SSR molecular marker was developed for PpMADS4, and it was then assigned into the G5 linkage group of Prunus sp. Both PpMADS4 and PpMADS6 genes were located at the same region in the G5 linkage group. Our results showed the potential application of these two MADS box genes for crop and fruit tree improvement.  相似文献   

9.
The cDNA of AtPLDa (Arabidopsis thaliana Phospholipase Da) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDa gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCI treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDa expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCI separately. The contents of chlorophylls and the activities of some anti- oxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialdehyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDa gene can enhance the drought and salt tolerance in transgenic P. tomentosa plants.  相似文献   

10.
11.
Transgenic tobacco plants carrying CrylAc, Crylle or both genes were obtained. In the leaves of transgenic plants carrying both genes, the contents of CrylAc and Crylle proteins were 0.173% and 0.131% of the total proteins, respectively. CrylAc protein content was 0.182 % and Cry1 le protein content was 0.124% of the total proteins in the leaves of transgenic plants containing only one Bt gene. Fresh leaves of transgenic tobacco and wild-type plants were used for the insect bioassay against wild-type and Cry1Ac-resistant cotton bollworm (Helicoverpa armigera). The bioassay results showed that transgenic plants carrying both genes were significantly more toxic to wild-type and CrylAc-resistant cotton bollworm than those carrying CrylAc or Crylle alone. This study indicates that the higher toxicity of transgenic tobacco plants carrying both genes is caused by the cooperative function of both Bt proteins, thus providing a potential way to delay the development of insect resistance to transgenic crops.  相似文献   

12.
A new plant expression vector (pBS29K-BA) containing two insect resistant genes, a synthetic chimeric gene BtS29K encoding the activated insecticidal protein Cry1Ac and a gene API-BA encoding the arrowhead (Sagittaria sagittifolia L.) proteinase inhibitor (API) A and B, is constructed. Transgenic tobacco plants expressing these two genes are obtained through Agrobacterium-mediated transformation of tobacco leaf discs. The average expression levels of Cry1Ac and API-BA proteins in transgenic plants are of 3.2 μg and 4.9 μg per gram fresh leaf respectively. The results of insecticidal assay of transgenic plants indicate that the pBS29K-BA transformed plants are more resistant to insect damage than the plants expressing the Cry1Ac gene or API-BA gene alone.  相似文献   

13.
The class of nucleotide-binding site (NBS)- Leucine-rich repeat (LRR) disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Consequently, many NBS-LRR genes have been identified in various plant species. In this study, we identified 617 NBS-encoding genes in the Medicago truncatula genome (Mt3.5v5) and divided them into two groups, regular (490) and non-regular (127) NBS- LRR genes. The regular NBS-LRR genes were character- ized on the bases of structural diversity, chromosomal location, gene duplication, conserved protein motifs, and EST expression profiling. According to N-terminal motifs and LRR motifs, the 490 regular NBS-LRR genes were then classified into 10 types: CC-NBS (4), CC-NBS-LRR (212), TIR-NBS (20), TIR-NBS-LRR (160), TIR-NBS-TIR (1), TIR-NBS-TIR-LRR (2), NBS-TIR (7), NBS-TIR-LRR (1), NBS (10), and NBS-LRR (73). Analysis of the phys- ical location and duplications of the regular NBS-LRR genes revealed that the M. truncatula genome is similar to rice. Interestingly, we found that TIR-type genes are more frequently expressed than non-TIR-type genes in M. trun- catula, whereas the number of non-TIR-type regular NBS- LRR genes was greater than TIR-type genes, suggesting the gene expression was not associated with the total number of NBS-LRR genes. Moreover, we found that the phylogenetic tree supported our division of the regular NBS-LRR genes into two distinct clades (TIR-type and non-TIR-type), but some of the non-TIR-type lineages contain TIR-type genes. These analyses provide a robust database of NBS-LRR genes in M. truncatula that will facilitate the isolation of new resistance genes and breeding strategies to engineer disease resistance in leguminous crop  相似文献   

14.
15.
16.
A tumor-targeting gene vector G250mAb-PEI-PEG has been prepared by modification of polyethylenimine (PEI) with polyethyleneglycol (PEG) and G250, a monoclonal antibody against the G250 antigen on tumor cell surface. The transfection efficiency was as high as 70% in G250 positive HeLa cells, whereas the transfection efficiency was relatively low (30%) in normal NIH3T3 cells. A plasmid encoding the short hairpin RNA (shRNA) specific for nucleostemin gene (NS) was efficiently transfected into the HeLa cells with this nonviral gene vector. RNA interference down-regulated the expression of NS gene in HeLa cells, inhibited cells proliferation and induced apoptosis. However, the growth and activity of the NIH3T3 cells were not affected under the same treatment. These results indicate that the reported nonviral gene vector, G250mAb-PEI-PEG, can target and efficiently deliver genes into HeLa cells, and has the potential for the cervical cancer treatment.  相似文献   

17.
18.
A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C230) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode metacleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.  相似文献   

19.
An antimicrobial peptide gene from Amaranthus hypochondriacus, Ah-AMP, was amplified by PCR and cloned. Sequence analysis results revealed that this gene is 261 bp in length encoding a precursor polypeptide of 87 amino acid residues. Ah-AMP gene was inserted in the binary vector pBin438 to construct a plant expression vector pBinAH916. Leave explants of Nicotiana tabacum var. SR1 were transformed with Agrobacterium tumefaciens LBA4404 harboring the above expression vector. Results from PCR, Southern and Northern blot analyses confirmed that the Ah-AMP gene had been integrated into the tobacco genome and was transcribed at mRNA level. Two bacterial-resistant transgenic plants were selected by inoculating the plants with Pseudomonas solanacearum and statistic analysis of two T1 lines showed that the resistance increased by 2.24 and 1.62 grade and the disease index decreased by 49.6% and 37.3% respectively when compared with the non-transformed control plants SR1. The results from challenging the plants with inoculums of Phytophthora parasitica showed that the symptom development was delayed and disease index was significantly reduced. These results suggest that Ah-AMP gene may be a potentially valuable gene for genetic engineering of plant for disease-resistance.  相似文献   

20.
The cDNA of AtPLDα (Arabidopsis thaliana Phospholipase Dα) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDα gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCl treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDα expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCl separately. The contents of chlorophylls and the activities of some anti-oxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialde-hyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDα gene can enhance the drought and salt tolerance in transgenic P. tomen-tosa plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号