首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of silica coating surfaces by trimethylsilylation has contributed to enhanced hydrophobicity(θ_w~o90°)against fluid permeation and corrosion in Na Cl.These alkyl-silanized coatings were deployed to protect Mg alloy after reinforcing their internal structures with nanosilica powder.The reduced wetness of coating surfaces is attributed to their chemically-modified surface morphology,and this has been compared to the reticulate leaf structures of lotus plant.The optimum amount of silylating additive(hexamethyldisilazane)required to prepare a hydrophobic coating with minimum water adhesion has been established.Barrier performance of coatings were examined by electrochemical and surface analyses in 5 wt%Na Cl.The corrosion resistance of these coatings is a result of the direct contribution of their bulk stability and surface hydrophobicity,and this is expressed in terms of the variation of electrochemical parameters with exposure time.These coatings may have emerging industrial applications,including a future in metal surface treatments and anticorrosion paints.  相似文献   

2.
The changes of stress level for the ultra-high strength Al-Zn-Mg-Cu-Zr alloy were described by constitutive equation with considering lattice diffusion of aluminum, zinc, magnesium and copper. Zener–Hollomon(Z)parameter expression based on the constitutive equation with considering lattice diffusion was used to reflect the changes of microstructure. The critical stress σcfor the initiation of dynamic recrystallization(DRX) was introduced to calculate the Z parameter. Steady-state dislocation density ρsatand critical dislocation density ρcfor the initiation of DRX decreased with the increase of deformation temperature. The dependence of diffusion activation energy Q on temperature and strain rate was given and the effects of deformation conditions on Q were discussed in detail. Microstructural evolution revealed that low angle boundaries(2–5°) created in the process of dynamic recovery(DRV) could convert into subgrain boundary, thus the original grains were divided into subgrains, and then subgrains transformed into DRX grains by the way of progressive rotation. When the Z value was high(ln Z 30.9), DRV was the main softening mechanism. With the decrease of Z value, both of DRV and DRX played an important roles in softening effect, while with the further decrease of Z value(ln Z 28.6), DRX became the main softening mechanism. Continuous dynamic recrystallization(CDRX) and discontinuous dynamic recrystallization(DDRX) operated together under the condition of lower Z value, but CDRX was confirmed as the dominant DRX mechanism.  相似文献   

3.
4.
Au/Zn O/n-Si(MIS)structures were fabricated by using the RF sputtering method and their complex dielectric constant(ε~*=ε’-jε’’),electric modulus(M~*=M′+j M’’)and electrical conductivity(σ=σ_(dc)+σ_(ac))values were investigated as a function of frequency(0.7 k Hz-1 MHz)and voltage(-6–(+6 V))by capacitance-voltage(C-V)and conductance-voltage(G/ω-V)measurements to get more information on the conduction mechanisms and formation of barrier height between Au and n-Si.The lnσ-Lnf plots have two different regions corresponding to low-intermediate and high frequencies.Such behavior of lnσ-lnf plots shows that the existence of two different conduction mechanisms(CMs)at low-intermediate and high frequencies.Moreover,the reverse bias saturation current(I_o),ideality factor(n),barrier height(Φ_(Bo))were determined from the forward bias I-V data and they were found as a strong function of temperature.The value of n especially at low temperature is considerably higher than unity.The values ofΦ_(B0)and standard deviation(σ_s)were found from the intercept and slope ofΦ_(Bo)-q/2k T plots as 0.551 e V and 0.075 V for the region I(80–220 K)and 1.126 e V and 0.053 V for the region II(220–400 K),respectively.The values ofΦ_(Bo)and effective Richardson constant(A~*)were found from slope and intercept of activation energy plots as 0.564 e V and 101.084 Acm~(-2)K~(-2)for the region I and 1.136 e V and41.87 Acm~(-2)K~(-2)for the region II,respectively.These results confirm that the current-voltage-temperature(I-V-T)characteristics of the fabricated Au/Zn O/n-Si SBDs can satisfactorily be explained on the basis of TE theory with double GD of the BHs.  相似文献   

5.
In this paper, we mainly study the relation of two cyclically reduced words w and w ′on the condi- tion they have the same trace polynomial (i.e., tr w= trw ′). By defining an equivalence relation through such operators on words as inverse, cyclically left shift, and mirror, it is straightforward to get that w ~ w ′ implies tr w = tr w ′. We show by a counter example that tr w = tr w ′ does not imply w ~ w ′. And in two special cases, we prove that tr w = tr w ′ if and only if w ~ w ′.  相似文献   

6.
The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA CCTA). -The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, △TS, and low solidification temperature, △TS, whereas 0.1wt% Ce resulted in a fast solidification time, △ta-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index (Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.  相似文献   

7.
Performance of biomaterials was strongly affected by their surface properties and could be designed artificially to meet specific biomedical requirements. In this study, F(F), Si O2 4(Si), or HCO 3(C)-doped Ca–P coatings were fabricated by biomimetic deposition on the surface of biodegradable high-purity magnesium(HP Mg). The crystalline phases, morphologies and compositions of Ca–P coatings had been characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS). The biomineralization and corrosion resistance of doped Ca–P coatings had also been investigated. The results showed that the Ca–P coating with or without doped elements mainly contained the plate-like dicalcium phosphate dehydrate(DCPD) phase. The doped F, Si, or C changed the surface morphology of Ca–P coatings after mineralization. Doped F enhanced the mineralization of Ca–P coating, and doped Si retarded the mineralization of Ca–P coating.However, H2 evolution of HP Mg discs with different Ca–P coatings was close to 0.4–0.7 ml/cm2 after two-week immersion. That meant that the corrosion resistance of the Ca–P coatings with different or without doped elements did not change significantly.  相似文献   

8.
9.
The problem of fault-tolerant controller design for a class of polytopic uncertain systems with actuator faults is studied in this paper. The actuator faults are presented as a more general and practical continuous fault model. Based on the affine quadratic stability (AQS), the stability of the polytopic uncertain system is replaced by the stability at all corners of the polytope. For a wide range of problems including H∞ and mixed H 2 /H∞ controller design, sufficient conditions are derived to guarantee the robust stability and performance of the closed-loop system in both normal and fault cases. In the framework of the linear matrix inequality (LMI) method, an iterative algorithm is developed to reduce conservativeness of the design procedure. The effectiveness of the proposed design is shown through a flight control example.  相似文献   

10.
On the Application of PCA Technique to Fault Diagnosis   总被引:2,自引:0,他引:2  
Naik A 《清华大学学报》2010,15(2):138-144
In this paper, we briefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin’s TH 2 statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.  相似文献   

11.
12.
The hot working behavior of near-a titanium alloy IMI 834 with a duplex starting microstructure was studied using the technique of processing map.The processing map was interpreted in terms of the microstrucmral processes occurring during deformation,based on the values of dimensionless parameter η which represents the energy dissipation through microstructural processes.An instability criterion(ξ<0) was also applied to demarcate the flow instability regions in the processing map.Both the parameters(η and ξ) were computed using the experimental data generated by carrying out hot compression tests over a range of temperatures(850-1060℃) and strain rates(3×10-4-1/s).The deterministic domains observed under the investigated temperature and strain rate conditions were attributed to continuous dynamic recrystallization or globularisation of a lamellae,dynamic recrystallization and growth of β grains through microstructural observations.An unified strain compensated constitutive equation was established to describe the hot working behavior of the material in the selected temperature-strain rate range.The established constitutive equation was validated using standard statistical parameters such as correlation coefficient and average absolute relative error.  相似文献   

13.
In this work, a novel series of multiferroic materials BiMn_2O_5 doped by Neodyme has been prepared by a sol-gel method at low temperature. The crystallographic studies using X-ray diffraction and Rietveld Refinement techniques showed the formation of single-phase samples for all compositions, crystallizing in a mullite-type orthorhombic perovskite structure, space group Pbam(Z = 4). The SEM techniques confirmed the formation of single-phase materials with excellent mapping distribution. Raman and infrared spectroscopic measurements were performed and combined with lattice dynamics simulations to describe the room-temperature vibrational properties of all samples. The X-ray Photoelectron Spectroscopy(XPS) were measured in the energy range of 0–1400 eV at room temperature. The Fermi level E_F was defined with the accuracy of 0.127, 0.32 and 0.48 eV for BiMn_2O_5, Bi_(0.9)Nd_(0.1)Mn_2O_5 and Bi_(0.8)Nd_(0.2)Mn_2O_5 respectively. The X-ray photoelectron spectroscopy shows the existence of Mn~(4+) state. Magnetic measurements indicate Neél temperature T_N at 31, 40 and 61 K for BiMn_2O_5,Bi_(0.9)Nd_(0.1)Mn_2O_5 and Bi_(0.8)Nd_(0.2)Mn_2O_5 respectively.  相似文献   

14.
15.
A Ti-8Nb-2Fe-0.2O(wt.%) alloy with high strength,high elastic admissible strain(δ) and low cost was designed using d-electron theory combined with electron-to-atom ratio(e/a) approach.Interstitial oxygen was introduced to strengthen the matrix of the alloy.The β-solution treated alloy was mainly composed of α " martensite with internal {111}_(α") type Ⅰ nano-twins.The α " martensite with hexagonal-like crystal structure caused by interstitial oxygen showed a high strength of 1.1 GPa but limited ductility.The alloy generated equiaxed fine-grained a phase embedded by β matrix via hot rolling and subsequent annealing in α+β phase field.The obtained alloy indicated a good combination of mechanical properties with ultimate tensile strength,Young's modulus,ductility and δ value of 1029 MPa,74 GPa,21% tensile elongation and 1.32%,respectively.These findings demonstrate that interstitial oxygen and martensitic nano-twins can be used to strengthen the soft α" martensite and high elastic admissible strain can be obtained by formation of equiaxed fine-grained α phase embedded by βmatrix in this Ti-8Nb-2Fe-0.2O alloy for orthopedic implant.  相似文献   

16.
The influence of various slip system combination models on crystal plasticity finite element simulation of Ni Ti shape memory alloy subjected to uniaxial compression deformation is investigated according to three combinations of slip systems, including combination of {010}100and {110}111slip modes, combination of {110}100and {110}111slip modes and combination of {110}100, {010}100and {110}111slip modes, which consist of 18, 18 and 24 slip systems, respectively. By means of simulating mechanical response,strain distribution, stress distribution and Schmid factor, it can be found that in terms of simulation accuracy,combination of {110}100and {110}111slip modes is in good agreement with combination of {110}100,{010}100and {110}111slip modes. The contribution of {110}100slip mode to plastic strain is primary in plastic deformation of Ni Ti shape memory alloy, whereas {010}100slip mode, which makes small contribution to plastic deformation, can be regarded as the unfavorable slip mode. In the case of large plastic strain, the {010}100slip mode contributes to the formation of(001) [010] texture component, while {110}100and {110}111slip modes facilitate the formation of γ-fibre(111) texture.  相似文献   

17.
The influence of alloying elements and heat treatment on the microstructure and mechanical behaviors of extruded Mg–Gd–Nd ternary alloys was investigated in this study. The grain sizes dramatically decreased after extrusion, and the particles which distributed in Mg matrix had great effect on the grain size. The grain sizes of extruded alloys decreased from 26 to 5 ​μm with the alloying content increasing. The mechanical test results show that both Gd and Nd had positive effect on the hardness, yield strength and Young's modulus. The ultimate tensile strength (UTS) was enhanced by Gd content, decreased with Nd content. The elongation of alloys was lower with higher alloying elements. Those extruded alloys were aged for 200 ​h in 200 ​°C. The Young's moduli were decreased by ageing treatment. Combined with microstructure study, the part of the reinforcement which identified as Mg5(Gd/Nd) was dissolved in Mg matrix. Nd element obviously has influence on the solubility of Gd in Mg alloys.  相似文献   

18.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

19.
CoPt-Co hybrids were successfully supported on amino modified SiO_2 nanospheres by a chemical reduction method at a temperature of 278 K.The solid carrier i.e.amino modified SiO_2,provides numerous anchoring sites for the metal nanoparticles(NPs)to improve the dispersion while reducing the size of metal NPs.The supported NPs displayed a narrow particle size distribution on the SiO_2 surface with an average diameter of 12 nm.The XRD results alongside with the binary alloy phase diagram suggest that the resulted NPs are bimetallic,composed of CoPt and amorphous Co.Among the prepared materials,the solid with the specific composition of SiO_2@Pt_(0.1)Co_(0.9)was proved to be effective catalyst for ammonia borane(AB)hydrolysis in aqueous solution.The turnover frequency(TOF)value of the supported nanocatalyst was 25.59mol_(H_2)min~(-1)·mol_M~(-1),almost twice as that of unsupported Pt_(0.1)Co_(0.9)NPs while the activation energy was 37.05 kJ mol~(-1).Furthermore,the SiO_2@Pt_(0.1)Co_(0.9)composite manifested high catalytic activity even after five cycles of reuse.  相似文献   

20.
This research aims to study the significance of Gd addition (0wt%-2wt%) on the microstructure and mechanical properties of Mg-9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg-9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg-9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg-9Al-2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1×1010 m-2) among the investigated compositions, the Mg-9Al-1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg-9Al-1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg-9Al-2.0Gd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号